The Forty-Sixth Annual William Lowell Putnam Competition Saturday, December 7, 1985

A-1 Determine, with proof, the number of ordered triples $\left(A_{1}, A_{2}, A_{3}\right)$ of sets which have the property that
(i) $A_{1} \cup A_{2} \cup A_{3}=\{1,2,3,4,5,6,7,8,9,10\}$, and
(ii) $A_{1} \cap A_{2} \cap A_{3}=\emptyset$.

Express your answer in the form $2^{a} 3^{b} 5^{c} 7^{d}$, where a, b, c, d are nonnegative integers.

A-2 Let T be an acute triangle. Inscribe a rectangle R in T with one side along a side of T. Then inscribe a rectangle S in the triangle formed by the side of R opposite the side on the boundary of T, and the other two sides of T, with one side along the side of R. For any polygon X, let $A(X)$ denote the area of X. Find the maximum value, or show that no maximum exists, of $\frac{A(R)+A(S)}{A(T)}$, where T ranges over all triangles and R, S over all rectangles as above.

A-3 Let d be a real number. For each integer $m \geq 0$, de£ne a sequence $\left\{a_{m}(j)\right\}, j=0,1,2, \ldots$ by the condition

$$
\begin{aligned}
a_{m}(0) & =d / 2^{m}, \\
a_{m}(j+1) & =\left(a_{m}(j)\right)^{2}+2 a_{m}(j), \quad j \geq 0 .
\end{aligned}
$$

Evaluate $\lim _{n \rightarrow \infty} a_{n}(n)$.
A-4 Defne a sequence $\left\{a_{i}\right\}$ by $a_{1}=3$ and $a_{i+1}=3^{a_{i}}$ for $i \geq 1$. Which integers between 00 and 99 inclusive occur as the last two digits in the decimal expansion of infnitely many a_{i} ?

A-5 Let $I_{m}=\int_{0}^{2 \pi} \cos (x) \cos (2 x) \cdots \cos (m x) d x$. For which integers $m, 1 \leq m \leq 10$ is $I_{m} \neq 0$?

A-6 If $p(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}$ is a polynomial with real coeffcients a_{i}, then set

$$
\Gamma(p(x))=a_{0}^{2}+a_{1}^{2}+\cdots+a_{m}^{2} .
$$

Let $F(x)=3 x^{2}+7 x+2$. Find, with proof, a polynomial $g(x)$ with real coeffcients such that
(i) $g(0)=1$, and
(ii) $\Gamma\left(f(x)^{n}\right)=\Gamma\left(g(x)^{n}\right)$
for every integer $n \geq 1$.

B-1 Let k be the smallest positive integer for which there exist distinct integers $m_{1}, m_{2}, m_{3}, m_{4}, m_{5}$ such that the polynomial
$p(x)=\left(x-m_{1}\right)\left(x-m_{2}\right)\left(x-m_{3}\right)\left(x-m_{4}\right)\left(x-m_{5}\right)$
has exactly k nonzero coeffcients. Find, with proof, a set of integers $m_{1}, m_{2}, m_{3}, m_{4}, m_{5}$ for which this minimum k is achieved.

B-2 Defne polynomials $f_{n}(x)$ for $n \geq 0$ by $f_{0}(x)=1$, $f_{n}(0)=0$ for $n \geq 1$, and

$$
\frac{d}{d x} f_{n+1}(x)=(n+1) f_{n}(x+1)
$$

for $n \geq 0$. Find, with proof, the explicit factorization of $f_{100}(1)$ into powers of distinct primes.

B-3 Let

$$
\begin{array}{llll}
a_{1,1} & a_{1,2} & a_{1,3} & \ldots \\
a_{2,1} & a_{2,2} & a_{2,3} & \ldots \\
a_{3,1} & a_{3,2} & a_{3,3} & \ldots
\end{array}
$$

be a doubly in£nite array of positive integers, and suppose each positive integer appears exactly eight times in the array. Prove that $a_{m, n}>m n$ for some pair of positive integers (m, n).

B-4 Let C be the unit circle $x^{2}+y^{2}=1$. A point p is chosen randomly on the circumference C and another point q is chosen randomly from the interior of C (these points are chosen independently and uniformly over their domains). Let R be the rectangle with sides parallel to the x and y-axes with diagonal $p q$. What is the probability that no point of R lies outside of C ?

B-5 Evaluate $\int_{0}^{\infty} t^{-1 / 2} e^{-1985\left(t+t^{-1}\right)} d t$. You may assume that $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$.

B-6 Let G be a $£$ nite set of real $n \times n$ matrices $\left\{M_{i}\right\}$, $1 \leq i \leq r$, which form a group under matrix multiplication. Suppose that $\sum_{i=1}^{r} \operatorname{tr}\left(M_{i}\right)=0$, where $\operatorname{tr}(A)$ denotes the trace of the matrix A. Prove that $\sum_{i=1}^{r} M_{i}$ is the $n \times n$ zero matrix.

