The Forty-Sixth Annual William Lowell Putnam Competition Solutions
 Gérald Petit
 petitge@yahoo.com

A-1 Answer: $2^{10} .3^{10}=6^{10}$.

For $n \geq 1$ we determine by induction on n the number a_{n} of ordered triples $\left(A_{1}, A_{2}, A_{3}\right)$ of sets which have the property that
(i) $A_{1} \cup A_{2} \cup A_{3}=\{1, \ldots, n\}$, and
(ii) $A_{1} \cap A_{2} \cap A_{3}=\emptyset$.

For $n=1$ this can happen iff one set only is empty (three possibilities) or if two sets are empty (three possibilities); that is $a_{1}=3+3=6=6^{1}$. Moving from n to $n+1$, note that $n+1$ either belongs to A_{1}, or A_{2} or A_{3} only, or to one and only one of the intersections $A_{1} \cap A_{2}, A_{2} \cap A_{3}$,$A_{1} \cap A_{3}$. That is, $a_{n+1}=6 a_{n}$. Thus $a_{n}=6^{n}$.

Note: If no empty set is allowed, the number is $6^{10}-3-3\left(3^{10}-\right.$ $2)=60289032$. To see this, let us count the confgurations with empty sets. There are three cases where exactly two sets are empty. In cases where only (say) A_{3} is empty, one frst needs to choose $k \geq 1$ elements among n to determine A_{1}, then choose from the elements of A_{1}, those that will be common with A_{2} (choose $l \geq 0$ elements among k). Among these possibilities, that one where $k=n$ and $l=0$ has to be excluded. Finally there are:
$\sum_{k=1}^{n} C_{n}^{k} \cdot \sum_{l=0}^{k} C_{k}^{l}-1=\sum_{k=1}^{n} C_{n}^{k} \cdot 2^{k}-1=3^{n}-2$
cases where only A_{3}, also where only A_{1} or A_{2} is empty. In total there are $3+3\left(3^{n}-2\right)$ con£gurations with empty sets, to be deducted from the total number 6^{n} of con£gurations.

A-2 Answer: $\sup _{R, S} \frac{A(R)+A(S)}{A(T)}=\frac{2}{3}$.
Denote the vertices of T by A_{1}, A_{2}, A_{3} and set $A_{1} A_{2}=$ $a_{1}, A_{2} A_{3}=a_{2}, A_{1} A_{3}=a_{3}$. Denote the base length corresponding to side i by H_{i}.
Suppose for convenience, that the side common to R and T is $\left(A_{1}, A_{2}\right)$. Set the origin at A_{1}, the $£$ rst co-ordinate axis as that directed by $\overrightarrow{A_{1} A_{2}}$ and the second co-ordinate axis perpendicular to the $£$ rst one. If R has height $h \leq H_{1}$, then it is easily seen (analytically) that $A(R)=a_{1} h\left(1-\frac{h}{H_{1}}\right)$.
This expression is maximum for $h^{*}=\frac{H_{1}}{2}$. This yields $A\left(R^{*}\right)=\frac{a_{1} H_{1}}{4}=\frac{A(T)}{2}$. The latter expression does not depend on the choice of the side common to R and T. Therefore, £nding the maximum of $A(R)+A(S)$ is equivalent to $£$ nding the maximum of $a_{1} h\left(1-\frac{h}{H_{1}}\right)+\frac{A(T(h))}{2}$, where $T(h)$ is the triangle of height $H_{1}-h$ limited by the side of R opposite $\left(A_{1}, A_{2}\right)$ and the other two sides of T. That is, we want the maximum of:

$$
f(h)=\frac{a_{1}}{4}\left(1-\frac{h}{H_{1}}\right)\left(H_{1}+3 h\right) .
$$

This yields $h^{*}=\frac{H_{1}}{3}$ and $f\left(h^{*}\right)=\frac{a_{1} H_{1}}{3}=\frac{2}{3} A(T)$.

A-3 Answer: $e^{d}-1$.

Since $a_{m}(j+1)=\left(a_{m}(j)+1\right)^{2}-1, j \geq 0$, put $b_{m}(j)=a_{m}(j)+1$.
Then $b_{m}(j+k)=\left(b_{m}(j)\right)^{2^{k}}, k, j \geq 0$.
Thus $b_{m}(m)=b_{m}(0)^{2^{m}}=\left(d / 2^{m}+1\right)^{2^{m}} \mapsto e^{d}$ as m goes to in£nity.

A-4 Answer: 27, 29, 61, 67, 43.

We frst prove that if $a \equiv b(100)$ then $3^{a} \equiv 3^{b}(100)$. To see this, check that $3^{100} \equiv 1(100)$ e.g. by noting that $3^{10} \equiv 49$ and expanding $3^{100}=\left(3^{10}\right)^{10} \equiv(50-1)^{10}$, using the binomial formula for $x \rightarrow(x-1)^{10}$. From there on the following is straightforward:

$$
\begin{aligned}
& a_{2}=3^{a_{1}} \equiv 27(100) \\
& a_{3}=3^{a_{2}} \equiv 29(100) \\
& a_{4}=3^{a_{3}} \equiv 61(100) \\
& a_{5}=3^{a_{4}} \equiv 67(100) \\
& a_{6}=3^{a_{5}} \equiv 43(100) \\
& a_{7}=3^{a_{6}} \equiv 27(100),
\end{aligned}
$$

so that $a_{n} \equiv a_{n-5}(100), n \geq 7$.

A-5 Answer: $m=4 k$ or $m=4 k-1, k \geq 1$.

First put $f_{m}(x)=\cos (x) \cos (2 x) \cdots \cos (m x)$ and $u=$ $\pi-x$. Then $\int_{\pi}^{2 \pi} f_{m}(x) d x=(-1)^{\frac{m(m+1)}{2}} \int_{0}^{\pi} f_{m}(u) d u$. Thus if $m=4 k-2$ or $m=4 k-3$ then $I_{m}=0$. Next:
$f_{m}(x)=\prod_{k=1}^{m}\left(\frac{e^{i k x}+e^{-i k x}}{2}\right)=\frac{1}{2^{m}} \sum_{k_{1}, \ldots, k_{m}} e^{i\left(\sum_{j=1}^{m}(-1)^{k_{j}} \cdot j\right) x}$
where $k_{i} \in\{0,1\}, i=1, \ldots, m$.
Now unless $A=\sum_{j=1}^{m}(-1)^{k_{j}} \cdot j=0, \int_{0}^{2 \pi} e^{i A x} d x=0$.
For $m=3,0=1+2-3$; for $m=4,0=1-2-3+4$. By induction on k, it is then easy to see that if $m=4 k-1$ or $m=4 k$, there is a set of $k_{i}^{\prime} s$ such that $\sum_{j=1}^{m}(-1)^{k_{j}} \cdot j=0$. Thus in those cases $I_{m} \neq 0$.

A-6 Answer: $g(x)=6 x^{2}+5 x+1$ is a solution.

If $p(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}$ is a polynomial with real coeffcients a_{i}, establish the convention that for $k<0$ or $k>m$ then $a_{k}=0$. Then set:

$$
T_{i}(p)=\sum_{k=0}^{m} a_{k} a_{k-i}=\sum_{k=-\infty}^{+\infty} a_{k} a_{k-i}, i \in \mathbb{Z}
$$

Then: $T_{-i}(p)=T_{i}(p), i \in \mathbb{Z} ; \Gamma(p)=T_{0}(p) ; T_{i}(p)=$ $0,|i|>m$.
For $p(x)=a_{0}+a_{1} x+a_{2} x^{2}$ defne a sequence $b_{k}(n)$ as follows:
$b_{k}(0)=a_{k}, k=0,1,2 ;$
$p^{n}(x)=\sum_{k=0}^{2 n} b_{k}(n) x^{k} ; b_{k}(n)=0$ otherwise. Then since:
$b_{k}(n+1)=a_{0} b_{k}(n)+a_{1} b_{k-1}(n)+a_{2} b_{k-2}(n), k, n \in \mathbb{Z}$
we have for $i, n \in \mathbb{N}$:
$T_{i}\left(p^{n+1}\right)=T_{0}(p) T_{i}\left(p^{n}\right)+\sum_{k=1}^{2} T_{k}(p)\left(T_{i-k}\left(p^{n}\right)+T_{i+k}\left(p^{n}\right)\right)$.
Thus if p, q are two polynomials of degree 2 , we see (by induction on n) that:
$\left(T_{i}(p)=T_{i}(q), i=0,1,2\right) \Leftrightarrow\left(T_{i}\left(p^{n}\right)=T_{i}\left(q^{n}\right), i, n \in \mathbb{N}\right)$
Looking for a polynomial g of degree 2 satisfying $T_{i}(g)=$ $T_{i}(f), i=0,1,2$, we come to the proposed answer.

B-1 Answer: $k=3$ which is achieved for example, with $m_{1}=0, m_{2}=-2, m_{3}=-1, m_{4}=1, m_{5}=2$.

Indeed $k=2$ is not possible, otherwise either zero would be a multiple root or p would have complex roots.

B-2 Answer: 101^{99} since 101 is prime.
By induction on n, one sees that $f_{n}(x)=x(x+n)^{n-1}$ for $n \geq 1$, thus $f_{100}(1)=101^{99}$.

B-3 Answer:
Denote by $[x]$ the largest integer smaller than x and take $N \geq 9$. Extracting any subset of size N^{2} from the array will yield at least $N^{2}-8 N$ elements which are strictly greater than N, since in this subset, $1,2, \ldots, N$ can each appear 8 times at the most.
Now suppose that $\forall m \leq N, n \leq N, a_{m, n} \leq m n$ to arrive at a contradiction. For this, extract rows $m=1, \ldots, N$ and columns $n=1, \ldots, N$ from the array. Those elements $a_{m, n}$ for which $a_{m, n} \leq N$ occupy at least the positions where $m n \leq N$. The number of couples (m, n) satisfying the latter is equal to:
$\sum_{l=1}^{N}\left[\frac{N}{l}\right] \geq N\left(\sum_{l=1}^{N} \frac{1}{l}\right)-N \geq N\left(\int_{1}^{N+1} \frac{d x}{x}\right)-N=$ $N(\ln (N+1)-1)$.
Now choose N such that $N(\ln (N+1)-1)>8 N$ (i.e. $N>e^{9}-1$) to obtain a contradiction, since then, there are not enough positions left in the $N \times N$ sub-matrix to place all the elements (either smaller than N or larger than N) that should be there.

B-4 Answer: $\frac{\sqrt{2}}{\pi^{2}} \approx 0.14$.
It is assumed that the probability distribution associated to p is the uniform distribution on $[0,2 \pi]$ and that associated
to q the uniform distribution on C. Given p, R will be inside C iff q is inside the rectangle inscribed in C, with sides parallels to the axes and having p as a vertex. If $(\cos \theta, \sin \theta)$ are the coordinates of p, this rectangle has the area $2|\sin \theta \cos \theta|$. Thus the searched probability is:

Prob $=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{2|\sin \theta \cos \theta|}{\pi} d \theta=\frac{2}{\pi^{2}} \int_{0}^{\pi / 4} \sin u d u=\frac{\sqrt{2}}{\pi^{2}}$.

B-5 Answer: $\sqrt{\frac{\pi}{1985}} \cdot\left(e^{-2.1985 \cdot \sqrt{1985}}\right)$.

First put $u=t^{1 / 2}$ then:
$I=\int_{0}^{\infty} t^{-1 / 2} e^{-1985\left(t+t^{-1}\right)} d t=2 \int_{0}^{\infty} e^{-1985\left(u^{2}+u^{-2}\right)} d u$.
Let $m=1985$ and for $\alpha \geq 0$,
$f(\alpha)=\int_{0}^{\infty} e^{-m\left(u^{2}+\alpha \cdot u^{-2}\right)} d u$.
Then f is differentiable and
$f^{\prime}(\alpha)=\int_{0}^{\infty}-m \cdot u^{-2} e^{-m\left(u^{2}+\alpha \cdot u^{-2}\right)} d u$
$=-m \cdot \int_{0}^{\infty} e^{-m\left(u^{-2}+\alpha \cdot u^{2}\right)} d u$
$=-m \cdot \alpha^{-1 / 2} \int_{0}^{\infty} e^{-m\left(u^{2}+\alpha \cdot u^{-2}\right)} d u$
$=-m \cdot \alpha^{-1 / 2} f(\alpha)$.
Thus $f(\alpha)=f(0) e^{-2 m \cdot \sqrt{\alpha}}$.
Now $f(0)=\int_{0}^{\infty} e^{-m x^{2}} d x=m^{-1 / 2} \int_{0}^{\infty} e^{-x^{2}} d x=$ $m^{-1 / 2}(\sqrt{\pi} / 2)$ and $I=2 f(m)=\sqrt{\pi / m} \cdot\left(e^{-2 m \cdot \sqrt{m}}\right)$.

B-6 Answer:

Put $A=\sum_{i=1}^{r} M_{i}$. For a given j, the set of products $\left\{\left(M_{i} \cdot M_{j}\right)\right\}_{i=1, \ldots r}$ is a translation of G. Thus:
$\left(\sum_{i=1}^{r}\left(M_{i}\right)\right) M_{j}=\sum_{i=1}^{r} M_{i}, j=1, \ldots r$.
Thus $A^{2}=\left(\sum_{i=1}^{r} M_{i}\right)^{2}=r\left(\sum_{i=1}^{r} M_{i}\right)=r A$. From there, it is easy to see that if r is an eigenvalue of A then in some base of \mathbb{R}^{n}, A must have the form:

$$
\left(\begin{array}{cc}
r I_{p} & B \\
0 & 0
\end{array}\right)
$$

where I_{p} is the $p \times p$ identity matrix and B some $p \times n-p$ matrix (use a base of eigenvectors associated to eigenvalue r, and complete it with a base of a supplementary vector space in \mathbb{R}^{n}).
Since $\operatorname{tr}(A)=0$, this is impossible and thus $A=0$.

