The Forty-Seventh Annual William Lowell Putnam Competition Saturday, December 6, 1986

A-1 Find, with explanation, the maximum value of $f(x)=$ $x^{3}-3 x$ on the set of all real numbers x satisfying $x^{4}+36 \leq 13 x^{2}$.

A-2 What is the units (i.e., rightmost) digit of

$$
\left\lfloor\frac{10^{20000}}{10^{100}+3}\right\rfloor ?
$$

A-3 Evaluate $\sum_{n=0}^{\infty} \operatorname{Arccot}\left(n^{2}+n+1\right)$, where $\operatorname{Arccot} t$ for $t \geq 0$ denotes the number θ in the interval $0<\theta \leq \pi / 2$ with $\cot \theta=t$.

A-4 A transversal of an $n \times n$ matrix A consists of n entries of A, no two in the same row or column. Let $f(n)$ be the number of $n \times n$ matrices A satisfying the following two conditions:
(a) Each entry $\alpha_{i, j}$ of A is in the set $\{-1,0,1\}$.
(b) The sum of the n entries of a transversal is the same for all transversals of A.

An example of such a matrix A is

$$
A=\left(\begin{array}{ccc}
-1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Determine with proof a formula for $f(n)$ of the form

$$
f(n)=a_{1} b_{1}^{n}+a_{2} b_{2}^{n}+a_{3} b_{3}^{n}+a_{4},
$$

where the a_{i} 's and b_{i} 's are rational numbers.
A-5 Suppose $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ are functions of n real variables $x=\left(x_{1}, \ldots, x_{n}\right)$ with continuous secondorder partial derivatives everywhere on \mathbb{R}^{n}. Suppose further that there are constants $c_{i j}$ such that

$$
\frac{\partial f_{i}}{\partial x_{j}}-\frac{\partial f_{j}}{\partial x_{i}}=c_{i j}
$$

for all i and $j, 1 \leq i \leq n, 1 \leq j \leq n$. Prove that there is a function $g(x)$ on \mathbb{R}^{n} such that $f_{i}+\partial g / \partial x_{i}$ is linear for all $i, 1 \leq i \leq n$. (A linear function is one of the form

$$
\left.a_{0}+a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} .\right)
$$

A-6 Let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers, and let $b_{1}, b_{2}, \ldots, b_{n}$ be distinct positive integers. Suppose that there is a polynomial $f(x)$ satisfying the identity

$$
(1-x)^{n} f(x)=1+\sum_{i=1}^{n} a_{i} x^{b_{i}}
$$

Find a simple expression (not involving any sums) for $f(1)$ in terms of $b_{1}, b_{2}, \ldots, b_{n}$ and n (but independent of $\left.a_{1}, a_{2}, \ldots, a_{n}\right)$.

B-1 Inscribe a rectangle of base b and height h in a circle of radius one, and inscribe an isosceles triangle in the region of the circle cut off by one base of the rectangle (with that side as the base of the triangle). For what value of h do the rectangle and triangle have the same area?

B-2 Prove that there are only a £nite number of possibilities for the ordered triple $T=(x-y, y-z, z-x)$, where x, y, z are complex numbers satisfying the simultaneous equations

$$
x(x-1)+2 y z=y(y-1)+2 z x+z(z-1)+2 x y,
$$

and list all such triples T.
B-3 Let Γ consist of all polynomials in x with integer coef£cienst. For f and g in Γ and m a positive integer, let $f \equiv g(\bmod m)$ mean that every coeffcient of $f-g$ is an integral multiple of m. Let n and p be positive integers with p prime. Given that f, g, h, r and s are in Γ with $r f+s g \equiv 1(\bmod p)$ and $f g \equiv h(\bmod p)$, prove that there exist F and G in Γ with $F \equiv f$ $(\bmod p), G \equiv g(\bmod p)$, and $F G \equiv h\left(\bmod p^{n}\right)$.

B-4 For a positive real number r, let $G(r)$ be the minimum value of $\left|r-\sqrt{m^{2}+2 n^{2}}\right|$ for all integers m and n. Prove or disprove the assertion that $\lim _{r \rightarrow \infty} G(r)$ exists and equals 0 .

B-5 Let $f(x, y, z)=x^{2}+y^{2}+z^{2}+x y z$. Let $p(x, y, z), q(x, y, z), r(x, y, z)$ be polynomials with real coeffcients satisfying

$$
f(p(x, y, z), q(x, y, z), r(x, y, z))=f(x, y, z)
$$

Prove or disprove the assertion that the sequence p, q, r consists of some permutation of $\pm x, \pm y, \pm z$, where the number of minus signs is 0 or 2 .

B-6 Suppose A, B, C, D are $n \times n$ matrices with entries in a feld F, satisfying the conditions that $A B^{T}$ andCD D^{T} are symmetric and $A D^{T}-B C^{T}=I$. Here I is the $n \times n$ identity matrix, and if M is an $n \times n$ matrix, M^{T} is its transpose. Prove that $A^{T} D+C^{T} B=I$.

