The Forty-Eighth Annual William Lowell Putnam Competition Saturday, December 5, 1987

A-1 Curves A, B, C and D are defned in the plane as follows:

$$
\begin{aligned}
A & =\left\{(x, y): x^{2}-y^{2}=\frac{x}{x^{2}+y^{2}}\right\}, \\
B & =\left\{(x, y): 2 x y+\frac{y}{x^{2}+y^{2}}=3\right\}, \\
C & =\left\{(x, y): x^{3}-3 x y^{2}+3 y=1\right\}, \\
D & =\left\{(x, y): 3 x^{2} y-3 x-y^{3}=0\right\} .
\end{aligned}
$$

Prove that $A \cap B=C \cap D$.
A-2 The sequence of digits
123456789101112131415161718192021...
is obtained by writing the positive integers in order. If the 10^{n}-th digit in this sequence occurs in the part of the sequence in which the m-digit numbers are placed, defne $f(n)$ to be m. For example, $f(2)=2$ because the 100th digit enters the sequence in the placement of the two-digit integer 55. Find, with proof, $f(1987)$.

A-3 For all real x, the real-valued function $y=f(x)$ satis£es

$$
y^{\prime \prime}-2 y^{\prime}+y=2 e^{x} .
$$

(a) If $f(x)>0$ for all real x, must $f^{\prime}(x)>0$ for all real x ? Explain.
(b) If $f^{\prime}(x)>0$ for all real x, must $f(x)>0$ for all real x ? Explain.

A-4 Let P be a polynomial, with real coef£cients, in three variables and F be a function of two variables such that $P(u x, u y, u z)=u^{2} F(y-x, z-x) \quad$ for all real x, y, z, u, and such that $P(1,0,0)=4, P(0,1,0)=5$, and $P(0,0,1)=6$. Also let A, B, C be complex numbers with $P(A, B, C)=0$ and $|B-A|=10$. Find $|C-A|$.

A-5 Let

$$
\vec{G}(x, y)=\left(\frac{-y}{x^{2}+4 y^{2}}, \frac{x}{x^{2}+4 y^{2}}, 0\right) .
$$

Prove or disprove that there is a vector-valued function

$$
\vec{F}(x, y, z)=(M(x, y, z), N(x, y, z), P(x, y, z))
$$

with the following properties:
(i) M, N, P have continuous partial derivatives for all $(x, y, z) \neq(0,0,0)$;
(ii) $\operatorname{Curl} \vec{F}=\overrightarrow{0}$ for all $(x, y, z) \neq(0,0,0)$;
(iii) $\vec{F}(x, y, 0)=\vec{G}(x, y)$.

A-6 For each positive integer n, let $a(n)$ be the number of zeroes in the base 3 representation of n. For which positive real numbers x does the series

$$
\sum_{n=1}^{\infty} \frac{x^{a(n)}}{n^{3}}
$$

converge?
B-1 Evaluate

$$
\int_{2}^{4} \frac{\sqrt{\ln (9-x)} d x}{\sqrt{\ln (9-x)}+\sqrt{\ln (x+3)}}
$$

B-2 Let r, s and t be integers with $0 \leq r, 0 \leq s$ and $r+s \leq t$. Prove that

$$
\frac{\binom{s}{0}}{\binom{t}{r}}+\frac{\binom{s}{1}}{\binom{t}{r+1}}+\cdots+\frac{\binom{s}{s}}{\binom{t}{r+s}}=\frac{t+1}{(t+1-s)\binom{t-s}{r}} .
$$

B-3 Let F be a feld in which $1+1 \neq 0$. Show that the set of solutions to the equation $x^{2}+y^{2}=1$ with x and y in F is given by $(x, y)=(1,0)$ and

$$
(x, y)=\left(\frac{r^{2}-1}{r^{2}+1}, \frac{2 r}{r^{2}+1}\right)
$$

where r runs through the elements of F such that $r^{2} \neq$ -1 .

B-4 Let $\left(x_{1}, y_{1}\right)=(0.8,0.6)$ and let $x_{n+1}=x_{n} \cos y_{n}-$ $y_{n} \sin y_{n}$ and $y_{n+1}=x_{n} \sin y_{n}+y_{n} \cos y_{n}$ for $n=$ $1,2,3, \ldots$. For each of $\lim _{n \rightarrow \infty} x_{n}$ and $\lim _{n \rightarrow \infty} y_{n}$, prove that the limit exists and £nd it or prove that the limit does not exist.

B-5 Let O_{n} be the n-dimensional vector $(0,0, \cdots, 0)$. Let M be a $2 n \times n$ matrix of complex numbers such that whenever $\left(z_{1}, z_{2}, \ldots, z_{2 n}\right) M=O_{n}$, with complex z_{i}, not all zero, then at least one of the z_{i} is not real. Prove that for arbitrary real numbers $r_{1}, r_{2}, \ldots, r_{2 n}$, there are complex numbers $w_{1}, w_{2}, \ldots, w_{n}$ such that

$$
\text { re }\left[M\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right)\right]=\left(\begin{array}{c}
r_{1} \\
\vdots \\
r_{n}
\end{array}\right) .
$$

(Note: if C is a matrix of complex numbers, $\mathrm{re}(C)$ is the matrix whose entries are the real parts of the entries of C.)

B-6 Let F be the £eld of p^{2} elements, where p is an odd prime. Suppose S is a set of $\left(p^{2}-1\right) / 2$ distinct nonzero elements of F with the property that for each $a \neq 0$ in F, exactly one of a and $-a$ is in S. Let N be the number of elements in the intersection $S \cap\{2 a: a \in S\}$. Prove that N is even.

