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Solution to the Putnam 1988 problems

A-1: Let R be the region consisting of the points (x, y) of the cartesian plane satisfying

both |x| − |y| ≤ 1 and |y| ≤ 1. Sketch the region R and find its area.

Solution: The area is 6; the graph I leave to the reader.

A-2: A not uncommon calculus mistake is to believe that the product rule for derivatives

says that (fg)′ = f ′g′. If f(x) = ex
2

, determine, with proof, whether there exists

an open interval (a, b) and a non-zero function g defined on (a, b) such that the

wrong product rule is true for x in (a, b).

Solution: We find all such functions. Note that (fg)′ = f ′g′ ⇒ f ′g′ = f ′g + fg′ hence

if g(x), f ′(x) − f(x) 6= 0 we get that g′(x)/g(x) = f ′(x)/(f ′(x) − f(x)). For

the particular f given, we then get that g′(x)/g(x) = (2x)ex
2

/((2x − 1)(ex
2

)) ⇒
g′(x)/g(x) = 2x/(2x− 1) (since ex

2

> 0). Integrating, we deduce that ln |g(x)| =
x+(1/2) ln |2x− 1|+c (an arbitrary constant)⇒ |g(x)| = ec

√

|2x− 1|ex ⇒ g(x) =

C
√

|2x− 1|ex, C arbitrary 6= 0. We finish by noting that any g(x) so defined is

differentiable on any open interval that does not contain 1/2.

Q.E.D.

A-3: Determine, with proof, the set of real numbers x for which
∑

∞

n=1 (
1
n csc( 1

n )− 1)
x

converges.

Solution: The answer is x > 1
2 . To see this, note that by Taylor’s theorem with remain-

der sin( 1
n ) =

∑k−1
i=1 (−1)i−1

n−(2i+1) + c(−1)k−1
n−(2k+1), where 0 ≤ c ≤ 1

n .

Hence for n ≥ 1(1/n)/(1/n − 1/(3!n3) + 1/(5!n5) − 1 < (1/n) csc(1/n) − 1 <

(1/n)/(1/n−1/(3!n3))−1⇒ for n large enough, (1/2)1/(3!n2) < (1/n) csc(1/n)−
1 < 2 · 1/(3!n2). Applying the p-test and the comparison test, we see that
∑

∞

n=1 (
1
n csc( 1

n )− 1)
x
converges iff x > 1

2 .

Q.E.D.
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A-4: Justify your answers.

(a) If every point on the plane is painted one of three colors, do there necessarily exist

two points of the same color exactly one inch apart?

Solution: The answer is yes. Assume not and consider two equilateral triangles with side

one that have exactly one common face⇒ all points a distance of
√
3 apart are the

same color; now considering a triangle with sides
√
3,
√
3, 1 we reach the desired

contradiction.

Here is a pretty good list of references for the chromatic number of the plane (i.e.,

how many colors do you need so that no two points 1 away are the same color) up

to around 1982 (though the publication dates are up to 1985). This asks for the

chromatic number of the graph where two points in R2 are connected if they are

distance 1 apart. Let this chromatic number be chi(2) and in general let chi(n)

be the chromatic number of Rn. By a theorem in [2] this is equivalent to finding

what the maximum chromatic number of a finite subgraph of this infinite graph

is.

[1] H. Hadwiger, “Ein Ueberdeckungssatz für den Euklidischen Raum,” Portugal.

Math. #4 (1944), p.140-144

This seems to be the original reference for the problem

[2] N.G. de Bruijn and P. Erdös, “A Color Problem for Infinite Graphs and a

Problem in the Theory of Relations,” Nederl. Akad. Wetensch. (Indag Math)

#13 (1951), p. 371-373.

[3] H. Hadwiger, “Ungelöste Probleme No. 40,” Elemente der Math. #16 (1961),

p. 103-104.

Gives the upper bound of 7 with the hexagonal tiling and also a reference to a

Portugese journal where it appeared.

[4] L. Moser and W. Moser, “Solution to Problem 10,” Canad. Math. Bull. #4

(1961), p. 187-189.
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Shows that any 6 points in the plane only need 3 colors but gives 7 points that

require 4 (“the Moser Graph” see [7]).

[5] Paul Erdös, Frank Harary, and William T. Tutte, “On the Dimension of a

Graph,” Mathematika #12 (1965), p. 118-122.

States that 3¡chi(2)¡8. Proves that chi(n) is finite for all n.

[6] P. Erdös, “Problems and Results in Combinatorial Geometry,” in “Discrete

Geometry and Convexity,” Edited by Jacob E. Goodman, Erwin Lutwak, Joseph

Malkevitch, and Richard Pollack, Annals of the New York Academy of Sciences

Vol. 440, New York Academy of Sciences 1985, Pages 1-11.

States that 3¡chi(n)¡8 and “I am almost sure that chi(2)¿4.” States a question of

L. Moser: Let R be large and S a measurable set in the circle of radius R so that

no two points of S have distance 1. Denote by m(S) the measure of S. Determine

LimR→infty maxm(S)/R2.

Erdös conjectures that this limit is less than 1/4.

Erdös asks the following: “Let S be a subset of the plane. Join two points of S

if their distances is 1. This gives a graph G(S). Assume that the girth (shortest

circuit) of G(S) is k. Can its chromatic number be greater than 3? Wormald

proved that such a graph exists for k¡6. The problem is open for k¿5. Wormald

suggested that this method may work for k=6, but probably a new idea is needed

for k¿6. A related (perhaps identical) question is: ‘Does G(S) have a subgraph

that has girth k and chromatic number 4?’ ”

[7] N. Wormald, “A 4-chromatic graph with a special plane drawing,” J. Austr.

Math. Soc. Ser. A #28 (1970), p. 1-8.

The reference for the above question.

[8] R.L. Graham, “Old and New Euclidean Ramsey Theorems,” in “Discrete Ge-

ometry and Convexity,” Edited by Jacob E. Goodman, Erwin Lutwak, Joseph

Malkevitch, and Richard Pollack, Annals of the New York Academy of Sciences

Vol. 440, New York Academy of Sciences 1985, Pages 20-30.
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States that the best current bounds are 3¡chi(2)¡8. Calls the graph in [3] the Moser

graph. Quotes the result of Frankl and Wilson [8] that chi(n) grows exponentially

in n settling an earlier conjecture of Erdös (I don’t know the reference for this).

The best available bounds for this are

(1 + o(1))(1.2)n ≤ chi(n) ≤ (3 + o(1))n.

[9] P. Frankl and R.M. Wilson, “Intersection Theorems with Geometric Conse-

quences,” Combinatorica #1 (1981), p. 357-368.

[10] H. Hadwiger, H. Debrunner, and V.L. Klee, “Combinatorial Geometry in the

Plane,” Holt, Rinehart & Winston, New York (English edition, 1964).

[11] D.R. Woodall, “Distances Realized by Sets Covering the Plane,” Journal of

Combinatorial Theory (A) #14 (1973), p. 187-200.

Among other things, shows that rational points in the plane can be two colored.

[12] L. A. Székely, “Measurable Chromatic Number of Geometric Graphs and Sets

without some Distances in Euclidean Space,” Combinatorica #4 (1984), p.213-218.

Considers χm(R2), the measurable chromatic number, where sets of one color must

be Lebesgue measurable. He conjectures that χm(R2) is not equal to χ(R2) (if the

Axiom of Choice is false).

[13] Martin Gardner, “Scientific American,” October 1960, p. 160.

[14] Martin Gardner, “Wheels, Life and other Mathematical Amusements,” W.H.

Freeman and Co., New York 1983, pages 195-196.

This occurs in a chapter on mathematical problems including the 3x+1 problem.

I think that his references are wrong, including attributing the problem to Erdös

and claiming that Charles Trigg had original solutions in “Problem 133,” Crux

Mathematicorum, Vol. 2, 1976, pages 144-150.

Q.E.D.

(b) What if ”three” is replaced by ”nine”?

In this case, there does not necessarily exist two points of the same color exactly

one inch apart; this can be demonstrated by considering a tessellation of the plane
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by a 3 × 3 checkboard with side 2, with each component square a different color

(color of boundary points chosen in an obvious manner).

Q.E.D.

The length of the side of the checkerboard is not critical (the reader my enjoy

showing that 3/2 < side < 3
√
2/2 works).

A-5: Prove that there exists a unique function f from the set IR+ of positive real num-

bers to IR+ such that f(f(x)) = 6x− f(x) and f(x) > 0 for all x > 0.

Solution 1:

Clearly f(x) = 2x is one such solution; we need to show that it is the only solution.

Let f1(x) = f(x), fn(x) = f(fn−1(x)) and notice that fn(x) is defined for all

x > 0. An easy induction establishes that for n > 0fn(x) = anx+ bnf(x), where

a0 = 0, b0 = 1 and an+1 = 6bn, bn+1 = an − bn ⇒ bn+1 = 6bn−1 − bn. Solving this

latter equation in the standard manner, we deduce that limn→∞ an/bn = −2, and
since we have that fn(x) > 0 and since bn is alternately negative and positive; we

conclude that 2x ≤ f(x) ≤ 2x by letting n→∞.

Q.E.D.

Solution 2: (Dan Bernstein, Princeton)

As before, f(x) = 2x works. We must show that if f(x) = 2x + g(x) and f

satisfies the conditions then g(x) = 0 on IR+. Now f(f(x)) = 6x − f(x) means

that 2f(x) + g(f(x)) = 6x − 2x − g(x), i.e., 4x + 2g(x) + g(f(x)) = 4x − g(x),

i.e., 3g(x) + g(f(x)) = 0. This then implies g(f(f(x))) = 9g(x). Also note that

f(x) > 0 implies g(x) > −2x. Suppose g(x) is not 0 everywhere. Pick y at which

g(y) 6= 0. If g(y) > 0, observe g(f(y)) = −3g(y) < 0, so in any case there is a y0

with g(y0) < 0. Now define y1 = f(f(y0)), y2 = f(f(y1)), etc. We know g(yn+1)

equals g(f(f(yn))) = 9g(yn). But y(n+ 1) = f(f(yn)) = 6yn − f(yn) < 6yn since

f > 0. Hence for each n there exists yn < 6ny0 such that g(yn) = 9ng(y0). The
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rest is obvious: 0 > g(y0) = 9−ng(yn) > −2 ·9−nyn > −2(6/9)ny0, and we observe

that as n goes to infinity we have a contradiction.

Q.E.D.

A-6: If a linear transformation A on an n-dimensional vector space has n+1 eigenvectors

such that any n of them are linearly independent, does it follow that A is a scalar

multiple of the identity? Prove your answer.

Solution: The answer is yes. First note that if x1, . . . , xn+1 are the eigenvectors, then

we must have that an+1xn+1 = a1x1 + · · · + anxn for some non-zero scalars

a1, . . . , an+1. Multiplying by A on the left we see that λn+1an+1xn+1 = λ1a1x1 +

· · ·+λnanxn, where λi is the eigenvalue corresponding to the eigenvectors xi. But

since we also have that λn+1an+1xn+1 = λn+1a1x1 + · · ·+ λn+1anxn we conclude

that λ1a1x1 + · · · + λnanxn = λn+1a1x1 + · · · + λn+1anxn ⇒ a1(λ1 − λn+1)x1 +

· · · + an(λn − λn+1)x1 = 0 ⇒ λ1 = · · · = λn+1 = λ since x1, . . . , xn are linearly

independent. To finish, note that the dimension of the eigenspace of λ is equal to

n, and since this equals the dimension of the nullspace of A−λI we conclude that

the rank of A− λI equals n− n = 0⇒ A− λI = 0.

Q.E.D.

B-1: A composite (positive integer) is a product ab with a and b not necessarily distinct

integers in {2, 3, 4, . . .}. Show that every composite is expressible as xy+xz+yz+1,

with x, y, and z positive integers.

Solution: Let x = a − 1, y = b − 1, z = 1; we then get that xy + xz + yz + 1 = (a − 1)(b −
1) + a− 1 + b− 1 + 1 = ab.

Q.E.D.

B-2: Prove or disprove: If x and y are real numbers with y ≥ 0 and y(y+1) ≤ (x+ 1)
2
,

then y(y − 1) ≤ x2.
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Solution: The statement is true. If x+1 ≥ 0 we have that
√

y(y + 1)−1 ≤ x⇒ x2 ≥ y2+y+

1−2
√

y2 + y ≥ y2−y since 2y+1 ≥ 2
√

y2 + y since (2y + 1)
2 ≥ 4(y2+y) if y ≥ 0.

If x+1 < 0, we see that
√

y(y + 1) ≤ −x−1⇒ x2 ≥ y2+y+1+2
√

y2 + y ≥ y2−y.

Q.E.D.

B-3: For every n in the set ZZ+ = {1, 2, . . .} of positive integers, let r(n) be the minimum

value of |c− d
√
3| for all nonnegative integers c and d with c+ d = n. Find, with

proof, the smallest positive real number g with r(n) ≤ g for all n in ZZ+.

Solution: The answer is (1 +
√
3)/2. We write |c − d

√
3| as |(n − d) − d

√
3|; I claim that

the minimum over all d, 0 ≤ d ≤ n, occurs when d = e = bn/(1 +
√
3)c or when

d = f = e+ 1 = bn/(1 +
√
3)c+ 1. To see this, note that (n− e)− e

√
3 > 0 and

if e′ < e, then (n− e′)− e′
√
3 > (n− e)− e

√
3, and similarly for f ′ > f . Now let

r = n/(1 +
√
3) − bn/(1 +

√
3)c and note that |(n − e) − e

√
3| = r(1 +

√
3) and

|(n− f)− f
√
3| = (1− r)(1 +

√
3). Clearly one of these will be ≤ (1 +

√
3)/2. To

see that (1+ ≤ 3)/2 cannot be lowered, note that since 1 +
√
3 is irrational, r is

uniformly distributed (mod 1).

Q.E.D.

Notes: We do not really need the result that x irrational ⇒ xn− bxnc u. d. (mod 1), it

would suffice to show that x irrational ⇒ xn− bxnc is dense in (0, 1). But this is

obvious, since if x is irrational there exists arbitrarily large q such that there exists

p with (p, q) = 1 such that p/q < x < (p + 1)/q. The nifty thing about the u. d.

result is that it answers the question: what number x should we choose such that

the density of {n : r(n) < x} equals t, 0 < t < 1? The u. d. result implies that

the answer is t(1 +
√
3)/2. The u. d. result also provides the key to the question:

what is the average value of r(n)? The answer is (1 +
√
3)/4.

B-4: Prove that if
∑

∞

n=1 a(n) is a convergent series of positive real numbers, then so is
∑

∞

n=1 (a(n))
n/(n+1)

.



Chris Long, Rutgers University January 22, 1989

Solution: Note that the subseries of terms a(n)
n

n+1 with a(n)
1

n+1 ≤ 1
2 converges since then

a(n)
n

n+1 is dominated by 1/2n, the subseries of terms a(n)
n

n+1 with a(n)
1

n+1 > 1
2

converges since then a(n)
n

n+1 is dominated by 2a(n), hence
∑

∞

n=1 a(n)
n

n+1 con-

verges.

Q.E.D.

B-5: For positive integers n, let M(n) be the 2n+ 1 by 2n+ 1 skew-symmetric matrix

for which each entry in the first n subdiagonals below the main diagonal is 1 and

each of the remaining entries below the main diagonal is −1. Find, with proof,

the rank of M(n). (According to the definition the rank of a matrix is the largest

k such that there is a k × k submatrix with non-zero determinant.)

One may note that

M(1) =





0 −1 1
1 0 −1
−1 1 0



 and M(2) =











0 −1 −1 1 1
1 0 −1 −1 1
1 1 0 −1 −1
−1 1 1 0 −1
−1 −1 1 1 0











.

Solution 1: Since M(n) is skew-symmetric, M(n) is singular for all n, hence the rank can

be at most 2n. To see that this is indeed the answer, consider the submatrix

Mi(n) obtained by deleting row i and column i from M(n). From the definition of

the determinant we have that det(Mi(n)) =
∑

(−1)δ(k)
a1k(1) · · · a(2n)k(2n), where

k is member of S2n (the group of permutations on {1, . . . , 2n}) and δ(k) is 0

if k is an even permutation or 1 if k is an odd permutation. Now note that

(−1)δ(k)
a1k(1) · · · a(2n)k(2n) equals either 0 or ±1, and is non-zero iff k(i) 6= i for

all i, i.e. iff k has no fixed points. If we can now show that the set of all elements

k of S2n, with k(i) 6= i for all i, has odd order, we win since this would imply

that det(Mi(n)) is odd ⇒ det(Mi) 6= 0. To show this, let f(n) equal the set of all

elements k of Sn with k(i) 6= i for all i. We have that f(1) = 0, f(2) = 1 and we

see that f(n) = (n − 1)(f(n − 1) + f(n − 2)) by considering the possible values

of f(1) and whether or not f(f(1)) = 1; an easy induction now establishes that

f(2n) is odd for all n.

Q.E.D.
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Notes: In fact, it is a well-known result that f(n) = n!(1/2!− 1/3! + · · ·+ (−1)n/n!).

Solution 2: As before, since M(n) is skew-symmetric M(n) is singular for all n and hence can

have rank at most 2n. To see that this is the rank, let Mi(n) be the submatrix

obtained by deleting row i and column i from M(n). We finish by noting that

Mi(n)
2 ≡ I2n (mod 2), hence Mi(n) is nonsingular.

Q.E.D.

B-6: Prove that there exist an infinite number of ordered pairs (a, b) of integers such

that for every positive integer t the number at + b is a triangular number if and

only if t is a triangular number. (The triangular numbers are the t(n) = n(n+1)/2

with n in {0, 1, 2, . . .} ).

Solution: Call a pair of integers (a, b) a triangular pair if at + b is a triangular number

iff t is a triangular number. I claim that (9, 1) is a triangular pair. Note that

9(n(n + 1)/2) + 1 = (3n + 1)(3n + 2)/2 hence 9t + 1 is triangular if t is. For the

other direction, note that if 9t + 1 = n(n + 1)/2 ⇒ n = 3k + 1 hence 9t + 1 =

n(n + 1)/2 = 9(k(k + 1)/2) + 1 ⇒ t = k(k + 1)/2, therefore t is triangular. Now

note that if (a, b) is a triangular pair then so is (a2, (a+1)b), hence we can generate

an infinite number of triangular pairs starting with (9, 1).

Q.E.D.

Notes: The following is a proof of necessary and sufficient conditions for (a, b) to be a

triangular pair.

I claim that (a, b) is a triangular pair iff for some odd integer o we have that

a = o2, b = (o2 − 1)/8. I will first prove the direction ⇐. Assume we have

a = o2, b = (o2−1)/8. If t = n(n+1)/2 is any triangular number, then the identity

o2n(n+1)/2+(o2−1)/8 = (on+(o−1)/2)(on+(o+1)/2)/2 shows that at+b is also

a triangular number. On the other hand if o2t+(o2−1)/8 = n(n+1)/2, the above

identity implies we win if we can show that (n− (o−1)/2)/o is an integer, but this
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is true since o2t+(o2−1)/8 ≡ n(n+1)/2 (mod o2)⇒ 4n2+4n ≡ −1 (mod o2)⇒
(2n+ 1)

2 ≡ 0 (mod o2) ⇒ 2n + 1 ≡ 0 (mod o) ⇒ n ≡ (o − 1)/2 (mod o). For

the direction ⇒ assume that (a, b) and (a, c), c ≥ b, are both triangular pairs; to

see that b = c notice that if at+ b is triangular for all triangular numbers t, then

we can choose t so large that if c > b then at + c falls between two consecutive

triangular numbers; contradiction hence b = c. Now assume that (a, c) and (b, c)

are both triangular pairs; I claim that a = b. But this is clear since if (a, c)

and (b, c) are triangular pairs ⇒ (ab, bc + c) and (ab, ac + c) are triangular pairs

⇒ bc+c = ac+c by the above reasoning⇒ bc = ac⇒ either a = b or c = 0⇒ a = b

since c = 0 ⇒ a = b = 1. For a proof of this last assertion, assume (a, 0), a > 1,

is a triangular pair; to see that this gives a contradiction note that if (a, 0) is a

triangular pair ⇒ (a2, 0) is also triangular pair, but this is impossible since then

we must have that a(a3 +1)/2 is triangular (since a2a(a3 +1)/2 is triangular) but

(a2−1)a2/2 < a(a3+1)/2 < a2(a2+1)/2 (if a > 1). We are now done, since if (a, b)

is a triangular pair⇒ a0+b = n(n+1)/2 for some n ≥ 0⇒ b = ((2n+ 1)
2−1)/8.

Q.E.D.


