The Fiftieth Annual William Lowell Putnam Competition Saturday, December 2, 1989

A-1 How many primes among the positive integers, written as usual in base 10 , are alternating 1 's and 0 's, beginning and ending with 1 ?
A-2 Evaluate $\int_{0}^{a} \int_{0}^{b} e^{\max \left\{b^{2} x^{2}, a^{2} y^{2}\right\}} d y d x$ where a and b are positive.

A-3 Prove that if

$$
11 z^{10}+10 i z^{9}+10 i z-11=0
$$

then $|z|=1$. (Here z is a complex number and $i^{2}=$ -1 .)

A-4 If α is an irrational number, $0<\alpha<1$, is there a £nite game with an honest coin such that the probability of one player winning the game is α ? (An honest coin is one for which the probability of heads and the probability of tails are both $\frac{1}{2}$. A game is £nite if with probability 1 it must end in a £nite number of moves.)

A-5 Let m be a positive integer and let \mathcal{G} be a regular $(2 m+1)$-gon inscribed in the unit circle. Show that there is a positive constant A, independent of m, with the following property. For any points p inside \mathcal{G} there are two distinct vertices v_{1} and v_{2} of \mathcal{G} such that

$$
\left|\left|p-v_{1}\right|-\left|p-v_{2}\right|\right|<\frac{1}{m}-\frac{A}{m^{3}}
$$

Here $|s-t|$ denotes the distance between the points s and t.

A-6 Let $\alpha=1+a_{1} x+a_{2} x^{2}+\cdots$ be a formal power series with coeffcients in the £eld of two elements. Let

$$
a_{n}= \begin{cases}1 \begin{array}{l}
\text { if every block of zeros in the binary } \\
\text { expansion of } n \text { has an even number } \\
\text { of zeros in the block }
\end{array} \\
0 & \text { otherwise }\end{cases}
$$

(For example, $a_{36}=1$ because $36=100100_{2}$ and $a_{20}=0$ because $20=10100_{2}$.) Prove that $\alpha^{3}+x \alpha+$ $1=0$.

B-1 A dart, thrown at random, hits a square target. Assuming that any two parts of the target of equal area are equally likely to be hit, £nd the probability that the point hit is nearer to the center than to any edge. Express your answer in the form $\frac{a \sqrt{b}+c}{d}$, where a, b, c, d are integers.

B-2 Let S be a non-empty set with an associative operation that is left and right cancellative ($x y=x z$ implies $y=z$, and $y x=z x$ implies $y=z$). Assume that for every a in S the set $\left\{a^{n}: n=1,2,3, \ldots\right\}$ is £nite. Must S be a group?

B-3 Let f be a function on $[0, \infty)$, differentiable and satisfying

$$
f^{\prime}(x)=-3 f(x)+6 f(2 x)
$$

for $x>0$. Assume that $|f(x)| \leq e^{-\sqrt{x}}$ for $x \geq 0$ (so that $f(x)$ tends rapidly to 0 as x increases). For n a non-negative integer, defne

$$
\mu_{n}=\int_{0}^{\infty} x^{n} f(x) d x
$$

(sometimes called the nth moment of f).
a) Express μ_{n} in terms of μ_{0}.
b) Prove that the sequence $\left\{\mu_{n} \frac{3^{n}}{n!}\right\}$ always converges, and that the limit is 0 only if $\mu_{0}=0$.

B-4 Can a countably infnite set have an uncountable collection of non-empty subsets such that the intersection of any two of them is £nite?

B-5 Label the vertices of a trapezoid T (quadrilateral with two parallel sides) inscribed in the unit circle as A, B, C, D so that $A B$ is parallel to $C D$ and A, B, C, D are in counterclockwise order. Let s_{1}, s_{2}, and d denote the lengths of the line segments $A B, C D$, and $O E$, where E is the point of intersection of the diagonals of T, and O is the center of the circle. Determine the least upper bound of $\frac{s_{1}-s_{2}}{d}$ over all such T for which $d \neq 0$, and describe all cases, if any, in which it is attained.

B-6 Let $\left(x_{1}, x_{2}, \ldots x_{n}\right)$ be a point chosen at random from the n-dimensional region defned by $0<x_{1}<x_{2}<$ $\cdots<x_{n}<1$. Let f be a continuous function on $[0,1]$ with $f(1)=0$. Set $x_{0}=0$ and $x_{n+1}=1$. Show that the expected value of the Riemann sum

$$
\sum_{i=0}^{n}\left(x_{i+1}-x_{i}\right) f\left(x_{i+1}\right)
$$

is $\int_{0}^{1} f(t) P(t) d t$, where P is a polynomial of degree n, independent of f, with $0 \leq P(t) \leq 1$ for $0 \leq t \leq 1$.

