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A–1 How many primes among the positive integers, written
as usual in base 10, are alternating 1’s and 0’s, begin-
ning and ending with 1?

A–2 Evaluate
∫ a

0

∫ b

0

emax{b2x2,a2y2} dy dx where a and b

are positive.

A–3 Prove that if

11z10 + 10iz9 + 10iz − 11 = 0,

then |z| = 1. (Here z is a complex number and i2 =
−1.)

A–4 If α is an irrational number, 0 < α < 1, is there a
£nite game with an honest coin such that the probabil-
ity of one player winning the game is α? (An honest
coin is one for which the probability of heads and the
probability of tails are both 1

2
. A game is £nite if with

probability 1 it must end in a £nite number of moves.)

A–5 Let m be a positive integer and let G be a regular
(2m + 1)-gon inscribed in the unit circle. Show that
there is a positive constant A, independent of m, with
the following property. For any points p inside G there
are two distinct vertices v1 and v2 of G such that

| |p− v1| − |p− v2| | <
1

m
− A

m3
.

Here |s − t| denotes the distance between the points s
and t.

A–6 Let α = 1+a1x+a2x
2 + · · · be a formal power series

with coef£cients in the £eld of two elements. Let

an =



















1
if every block of zeros in the binary
expansion of n has an even number
of zeros in the block

0 otherwise.

(For example, a36 = 1 because 36 = 1001002 and
a20 = 0 because 20 = 101002.) Prove that α3 + xα +
1 = 0.

B–1 A dart, thrown at random, hits a square target. Assum-
ing that any two parts of the target of equal area are
equally likely to be hit, £nd the probability that the point
hit is nearer to the center than to any edge. Express your

answer in the form
a
√
b+ c

d
, where a, b, c, d are inte-

gers.

B–2 Let S be a non-empty set with an associative opera-
tion that is left and right cancellative (xy = xz implies
y = z, and yx = zx implies y = z). Assume that for
every a in S the set {an : n = 1, 2, 3, . . .} is £nite.
Must S be a group?

B–3 Let f be a function on [0,∞), differentiable and satis-
fying

f ′(x) = −3f(x) + 6f(2x)

for x > 0. Assume that |f(x)| ≤ e−
√

x for x ≥ 0 (so
that f(x) tends rapidly to 0 as x increases). For n a
non-negative integer, de£ne

µn =

∫ ∞

0

xnf(x) dx

(sometimes called the nth moment of f ).

a) Express µn in terms of µ0.

b) Prove that the sequence {µn
3

n

n!
} always con-

verges, and that the limit is 0 only if µ0 = 0.

B–4 Can a countably in£nite set have an uncountable collec-
tion of non-empty subsets such that the intersection of
any two of them is £nite?

B–5 Label the vertices of a trapezoid T (quadrilateral
with two parallel sides) inscribed in the unit circle
as A, B, C, D so that AB is parallel to CD and
A, B, C, D are in counterclockwise order. Let s1, s2,
and d denote the lengths of the line segments AB, CD,
and OE, where E is the point of intersection of the di-
agonals of T , and O is the center of the circle. Deter-
mine the least upper bound of s1−s2

d
over all such T for

which d 6= 0, and describe all cases, if any, in which it
is attained.

B–6 Let (x1, x2, . . . xn) be a point chosen at random from
the n-dimensional region de£ned by 0 < x1 < x2 <
· · · < xn < 1. Let f be a continuous function on [0, 1]
with f(1) = 0. Set x0 = 0 and xn+1 = 1. Show that
the expected value of the Riemann sum

n
∑

i=0

(xi+1 − xi)f(xi+1)

is
∫ 1

0
f(t)P (t) dt, where P is a polynomial of degree n,

independent of f , with 0 ≤ P (t) ≤ 1 for 0 ≤ t ≤ 1.


