The 55th William Lowell Putnam Mathematical Competition Saturday, December 3, 1994

- A-1 Let (a_n) be a sequence of positive reals such that, for all $n, a_n \leq a_{2n} + a_{2n+1}$. Prove that $\sum_{n=1}^{\infty} a_n$ diverges.
- A–2 Find the positive value of m such that the area in the £rst quadrant enclosed by the ellipse $\frac{x^2}{9} + y^2 = 1$, the x-axis, and the line y = 2x/3 is equal to the area in the £rst quadrant enclosed by the ellipse $\frac{x^2}{9} + y^2 = 1$, the y-axis, and the line y = mx.
- A=3 Prove that the points of an isosceles triangle of side length 1 annot be colored in four colors such that no two points at distance at least $2 \sqrt{2}$ from each other receive the same color.
- A-4 Let A and B be 2×2 matrices with integer entries such that each of A, A+B, A+2B, A+3B, A+4B has an inverse with integer entries. Prove that the same must be true of A+5B.
- A–5 Let (r_n) be a sequence of positive reals with limit 0. Let S be the set of all numbers expressible in the form $r_{i_1}+\cdots+r_{i_{1994}}$ for positive integers $i_1< i_2<\cdots< i_{1994}$. Prove that every interval (a,b) contains a subinterval (c,d) whose intersection with S is empty.
- A-6 Let f_1, \ldots, f_{10} be bijections of the integers such that for every integer n, there exists a sequence i_1, \ldots, i_k for some k such that $f_{i_1} \circ \cdots \circ f_{i_k}(0) = n$. Prove that if A is any nonempty £nite set, there exist at most 512

- sequences (e_1,\ldots,e_{10}) of zeroes and ones such that $f_1^{e_1}\circ\cdots\circ f_{10}^{e_{10}}$ maps A to A. (Here $f^1=f$ and f^0 means the identity function.)
- B-1 Find all positive integers n such that $|n-m^2| \le 250$ for exactly 15 nonnegative integers m.
- B-2 Find all c such that the graph of the function $x^4 + 9x^3 + cx^2 + ax + b$ meets some line in four distinct points.
- B-3 Let f(x) be a positive-valued function over the reals such that f'(x) > f(x) for all x. For what k must there exist N such that $f(x) > e^{kx}$ for x > N?
- B-4 Let A be the matrix ((32)(42)) and for positive integers n, de£ne d_n as the greatest common divisor of the entries of $A^n I$, where I = ((10)(01)). Prove that $d_n \to \infty$ as $n \to \infty$.
- B–5 Fix n a positive integer. For α real, define $f_{\alpha}(i)$ as the greatest integer less than or equal to αi , and write f^k for the k-th iterate of f (i.e. $f^1 = f$ and $f^{k+1} = f \circ f^k$). Prove there exists α such that $f_{\alpha^k}(n^2) = f_{\alpha}^k(n^2) = n^2 k$ for $k = 1, \ldots, n$.
- B-6 Suppose a,b,c,d are integers with $0 \le a \le bleq$ 99, $0 \le c \le d \le 99$. For any integer i, let $n_i = 101i + 1002^i$. Show that if $n_a + n_b$ is congruent to $n_c + n_d \mod 10100$, then a = c and b = d.