The 55th William Lowell Putnam Mathematical Competition Saturday, December 3, 1994

A-1 Let $\left(a_{n}\right)$ be a sequence of positive reals such that, for all $n, a_{n} \leq a_{2 n}+a_{2 n+1}$. Prove that $\sum_{n=1}^{\infty} a_{n}$ diverges.

A-2 Find the positive value of m such that the area in the £rst quadrant enclosed by the ellipse $\frac{x^{2}}{9}+y^{2}=1$, the x-axis, and the line $y=2 x / 3$ is equal to the area in the £rst quadrant enclosed by the ellipse $\frac{x^{2}}{9}+y^{2}=1$, the y-axis, and the line $y=m x$.

A-3 Prove that the points of an isosceles triangle of side length 1 annot be colored in four colors such that no two points at distance at least $2-\sqrt{2}$ from each other receive the same color.

A-4 Let A and B be 2×2 matrices with integer entries such that each of $A, A+B, A+2 B, A+3 B, A+4 B$ has an inverse with integer entries. Prove that the same must be true of $A+5 B$.

A-5 Let $\left(r_{n}\right)$ be a sequence of positive reals with limit 0 . Let S be the set of all numbers expressible in the form $r_{i_{1}}+\cdots+r_{i_{1994}}$ for positive integers $i_{1}<i_{2}<\cdots<$ i_{1994}. Prove that every interval (a, b) contains a subinterval (c, d) whose intersection with S is empty.

A-6 Let f_{1}, \ldots, f_{10} be bijections of the integers such that for every integer n, there exists a sequence i_{1}, \ldots, i_{k} for some k such that $f_{i_{1}} \circ \cdots \circ f_{i_{k}}(0)=n$. Prove that if A is any nonempty $£$ nite set, there exist at most 512
sequences $\left(e_{1}, \ldots, e_{10}\right)$ of zeroes and ones such that $f_{1}^{e_{1}} \circ \cdots \circ f_{10}^{e_{10}}$ maps A to A. (Here $f^{1}=f$ and f^{0} means the identity function.)

B-1 Find all positive integers n such that $\left|n-m^{2}\right| \leq 250$ for exactly 15 nonnegative integers m.

B-2 Find all c such that the graph of the function $x^{4}+9 x^{3}+$ $c x^{2}+a x+b$ meets some line in four distinct points.

B-3 Let $f(x)$ be a positive-valued function over the reals such that $f^{\prime}(x)>f(x)$ for all x. For what k must there exist N such that $f(x)>e^{k x}$ for $x>N$?

B-4 Let A be the matrix $((32)(42))$ and for positive integers n, defne d_{n} as the greatest common divisor of the entries of $A^{n}-I$, where $I=((10)(01))$. Prove that $d_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

B-5 Fix n a positive integer. For α real, defne $f_{\alpha}(i)$ as the greatest integer less than or equal to αi, and write f^{k} for the k-th iterate of f (i.e. $f^{1}=f$ and $f^{k+1}=f \circ f^{k}$). Prove there exists α such that $f_{\alpha^{k}}\left(n^{2}\right)=f_{\alpha}^{k}\left(n^{2}\right)=$ $n^{2}-k$ for $k=1, \ldots, n$.

B-6 Suppose a, b, c, d are integers with $0 \leq a \leq$ bleq99, $0 \leq c \leq d \leq 99$. For any integer i, let $n_{i}=$ $101 i+1002^{i}$. Show that if $n_{a}+n_{b}$ is congruent to $n_{c}+n_{d} \bmod 10100$, then $a=c$ and $b=d$.

