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A-1 If x and y are the sides of two squares with combined
area 1, then x2 + y2 = 1. Suppose without loss of gen-
erality that x ≥ y. Then the shorter side of a rectangle
containing both squares without overlap must be at least
x, and the longer side must be at least x+ y. Hence the
desired value of A is the maximum of x(x+ y).

To £nd this maximum, we let x = cos θ, y = sin θ with
θ ∈ [0, π/4]. Then we are to maximize

cos2 θ + sin θ cos θ =
1

2
(1 + cos 2θ + sin 2θ)

=
1

2
+

√
2

2
cos(2θ − π/4)

≤ 1 +
√

2

2
,

with equality for θ = π/8. Hence this value is the de-
sired value of A.

A-2 Let O1 and O2 be the centers of C1 and C2, respec-
tively. (We are assuming C1 has radius 1 and C2 has
radius 3.) Then the desired locus is an annulus centered
at the midpoint of O1O2, with inner radius 1 and outer
radius 2.

For a £xed point Q on C2, the locus of the midpoints of
the segments PQ for P lying on C1 is the image of C1

under a homothety centered at Q of radius 1/2, which
is a circle of radius 1/2. As Q varies, the center of this
smaller circle traces out a circle C3 of radius 3/2 (again
by homothety). By considering the two positions of Q
on the line of centers of the circles, one sees that C3 is
centered at the midpoint of O1O2, and the locus is now
clearly the speci£ed annulus.

A-3 The claim is false. There are
(

6
3

)

= 20 ways to choose
3 of the 6 courses; have each student choose a different
set of 3 courses. Then each pair of courses is chosen by
4 students (corresponding to the four ways to complete
this pair to a set of 3 courses) and is not chosen by 4
students (corresponding to the 3-element subsets of the
remaining 4 courses).

Note: Assuming that no two students choose the same
courses, the above counterexample is unique (up to per-
muting students). This may be seen as follows: Given a
group of students, suppose that for any pair of courses
(among the six) there are at most 4 students taking both,
and at most 4 taking neither. Then there are at most
120 = (4 + 4)

(

6
2

)

pairs (s, p), where s is a student, and

p is a set of two courses of which s is taking either both
or none. On the other hand, if a student s is taking k
courses, then he/she occurs in f(k) =

(

k
2

)

+
(

6−k
2

)

such
pairs (s, p). As f(k) is minimized for k = 3, it follows
that every student occurs in at least 6 =

(

3
2

)

+
(

3
2

)

such
pairs (s, p). Hence there can be at most 120/6 = 20 stu-
dents, with equality only if each student takes 3 courses,
and for each set of two courses, there are exactly 4 stu-
dents who take both and exactly 4 who take neither.
Since there are only 4 ways to complete a given pair
of courses to a set of 3, and only 4 ways to choose 3
courses not containing the given pair, the only way for
there to be 20 students (under our hypotheses) is if all
sets of 3 courses are in fact taken. This is the desired
conclusion.

However, Robin Chapman has pointed out that the so-
lution is not unique in the problem as stated, because a
given selection of courses may be made by more than
one student. One alternate solution is to identify the 6
courses with pairs of antipodal vertices of an icosahe-
dron, and have each student pick a different face and
choose the three vertices touching that face. In this ex-
ample, each of 10 selections is made by a pair of stu-
dents.

A-4 In fact, we will show that such a function g exists with
the property that (a, b, c) ∈ S if and only if g(d) <
g(e) < g(f) for some cyclic permutation (d, e, f) of
(a, b, c). We proceed by induction on the number of el-
ements in A. If A = {a, b, c} and (a, b, c) ∈ S, then
choose g with g(a) < g(b) < g(c), otherwise choose g
with g(a) > g(b) > g(c).

Now let z be an element of A and B = A − {z}.
Let a1, . . . , an be the elements of B labeled such that
g(a1) < g(a2) < · · · < g(an). We claim that there ex-
ists a unique i ∈ {1, . . . , n} such that (ai, z, ai+1) ∈ S,
where hereafter an+k = ak.

We show existence £rst. Suppose no such i exists; then
for all i, k ∈ {1, . . . , n}, we have (ai+k, z, ai) /∈ S.
This holds by property 1 for k = 1 and by induction on
k in general, noting that

(ai+k+1, z,ai+k), (ai+k, z, ai) ∈ S

⇒ (ai+k, ai+k+1, z), (z, ai, ai+k) ∈ S

⇒ (ai+k+1, z, ai) ∈ S.

Applying this when k = n, we get (ai−1, z, ai) ∈ S,



contradicting the fact that (ai, z, ai−1) ∈ S. Hence ex-
istence follows.

Now we show uniqueness. Suppose (ai, z, ai+1) ∈
S; then for any j 6= i − 1, i, i + 1, we have
(ai, ai+1, aj), (aj , aj+1, ai) ∈ S by the assumption on
G. Therefore

(ai, z, ai+1), (ai+1, aj , ai) ∈ S ⇒ (aj , ai, z) ∈ S

(ai, z, aj), (aj , aj+1, ai) ∈ S ⇒ (z, aj , aj+1),

so (aj , z, aj+1) /∈ S. The case j = i+1 is ruled out by

(ai, z, ai+1), (ai+1, ai+2, ai) ∈ S ⇒ (z, ai+1, ai+2) ∈ S

and the case j = i− 1 is similar.

Finally, we put g(z) in (g(an),+∞) if i = n, and
(g(ai), g(ai+1)) otherwise; an analysis similar to that
above shows that g has the desired property.

A-5 (due to Lenny Ng) For 1 ≤ n ≤ p − 1, p divides
(

p
n

)

and

1

p

(

p

n

)

=
1

n

p− 1

1

p− 2

2
· · · p− n+ 1

n− 1

≡ (−1)n−1

n
(mod p),

where the congruence x ≡ y (mod p) means that x− y
is a rational number whose numerator, in reduced form,
is divisible by p. Hence it suf£ces to show that

k
∑

n=1

(−1)n−1

n
≡ 0 (mod p).

We distinguish two cases based on p (mod 6). First
suppose p = 6r + 1, so that k = 4r. Then

4r
∑

n=1

(−1)n−1

n

=

4r
∑

n=1

1

n
− 2

2r
∑

n=1

1

2n

=

2r
∑

n=1

(

1

n
− 1

n

)

+

3r
∑

n=2r+1

(

1

n
+

1

6r + 1− n

)

=

3r
∑

n=2r+1

p

n(p− n)
≡ 0 (mod p),

since p = 6r + 1.

Now suppose p = 6r+5, so that k = 4r+3. A similar

argument gives

4r+3
∑

n=1

(−1)n−1

n

=

4r+3
∑

n=1

1

n
+ 2

2r+1
∑

n=1

1

2n

=

2r+1
∑

n=1

(

1

n
− 1

n

)

+

3r+2
∑

n=2r+2

(

1

n
+

1

6r + 5− n

)

=

3r+2
∑

n=2r+2

p

n(p− n)
≡ 0 (mod p).

A-6 We £rst consider the case c ≤ 1/4; we shall show in
this case f must be constant. The relation

f(x) = f(x2 + c) = f((−x)2 + c) = f(−x)

proves that f is an even function. Let r1 ≤ r2 be the
roots of x2 + c − x, both of which are real. If x > r2,
de£ne x0 = x and xn+1 =

√
xn − c for each positive

integer x. By induction on n, r2 < xn+1 < xn for all
n, so the sequence {xn} tends to a limit L which is a
root of x2+c = x not less than r2. Of course this means
L = r2. Since f(x) = f(xn) for all n and xn → r2,
we conclude f(x) = f(r2), so f is constant on x ≥ r2.

If r1 < x < r2 and xn is de£ned as before, then by in-
duction, xn < xn+1 < r2. Note that the sequence can
be de£ned because r1 > c; the latter follows by noting
that the polynomial x2 − x+ c is positive at x = c and
has its minimum at 1/2 > c, so both roots are greater
than c. In any case, we deduce that f(x) is also constant
on r1 ≤ x ≤ r2.

Finally, suppose x < r1. Now de£ne x0 = x, xn+1 =
x2

n + c. Given that xn < r1, we have xn+1 > xn. Thus
if we had xn < r1 for all n, by the same argument as in
the £rst case we deduce xn → r1 and so f(x) = f(r1).
Actually, this doesn’t happen; eventually we have xn >
r1, in which case f(x) = f(xn) = f(r1) by what we
have already shown. We conclude that f is a constant
function. (Thanks to Marshall Buck for catching an in-
accuracy in a previous version of this solution.)

Now suppose c > 1/4. Then the sequence xn de£ned
by x0 = 0 and xn+1 = x2

n + c is strictly increasing
and has no limit point. Thus if we de£ne f on [x0, x1]
as any continuous function with equal values on the
endpoints, and extend the de£nition from [xn, xn+1] to
[xn+1, xn+2] by the relation f(x) = f(x2 + c), and
extend the de£nition further to x < 0 by the relation
f(x) = f(−x), the resulting function has the desired
property. Moreover, any function with that property
clearly has this form.

B-1 Let [n] denote the set {1, 2, . . . , n}, and let fn denote
the number of minimal sel£sh subsets of [n]. Then the
number of minimal sel£sh subsets of [n] not containing

2



n is equal to fn−1. On the other hand, for any mini-
mal sel£sh subset of [n] containing n, by subtracting 1
from each element, and then taking away the element
n − 1 from the set, we obtain a minimal sel£sh subset
of [n − 2] (since 1 and n cannot both occur in a sel£sh
set). Conversely, any minimal sel£sh subset of [n − 2]
gives rise to a minimal sel£sh subset of [n] containing
n by the inverse procedure. Hence the number of min-
imal sel£sh subsets of [n] containing n is fn−2. Thus
we obtain fn = fn−1 + fn−2. Since f1 = f2 = 1, we
have fn = Fn, where Fn denotes the nth term of the
Fibonacci sequence.

B-2 By estimating the area under the graph of lnx using up-
per and lower rectangles of width 2, we get

∫ 2n−1

1

lnx dx ≤ 2(ln(3) + · · ·+ ln(2n− 1))

≤
∫ 2n+1

3

lnx dx.

Since
∫

lnx dx = x lnx− x+C, we have, upon expo-
nentiating and taking square roots,

(

2n− 1

e

)

2n−1

2

< (2n− 1)
2n−1

2 e−n+1

≤ 1 · 3 · · · (2n− 1)

≤ (2n+ 1)
2n+1

2
e−n+1

33/2

<

(

2n+ 1

e

)

2n+1

2

,

using the fact that 1 < e < 3.

B-3 View x1, . . . , xn as an arrangement of the numbers
1, 2, . . . , n on a circle. We prove that the optimal ar-
rangement is

. . . , n− 4, n− 2, n, n− 1, n− 3, . . .

To show this, note that if a, b is a pair of adjacent num-
bers and c, d is another pair (read in the same order
around the circle) with a < d and b > c, then the seg-
ment from b to c can be reversed, increasing the sum
by

ac+ bd− ab− cd = (d− a)(b− c) > 0.

Now relabel the numbers so they appear in order as fol-
lows:

. . . , an−4, an−2, an = n, an−1, an−3, . . .

where without loss of generality we assume an−1 >
an−2. By considering the pairs an−2, an and
an−1, an−3 and using the trivial fact an > an−1, we
deduce an−2 > an−3. We then compare the pairs
an−4, an−2 and an−1, an−3, and using that an−1 >

an−2, we deduce an−3 > an−4. Continuing in this
fashion, we prove that an > an−1 > · · · > a1 and
so ak = k for k = 1, 2, . . . , n, i.e. that the optimal ar-
rangement is as claimed. In particular, the maximum
value of the sum is

1 · 2 + (n− 1) · n+ 1 · 3 + 2 · 4 + · · ·+ (n− 2) · n
= 2 + n2 − n+ (12 − 1) + · · ·+ [(n− 1)2 − 1]

= n2 − n+ 2− (n− 1) +
(n− 1)n(2n− 1)

6

=
2n3 + 3n2 − 11n+ 18

6
.

Alternate solution: We prove by induction that the value
given above is an upper bound; it is clearly a lower
bound because of the arrangement given above. As-
sume this is the case for n−1. The optimal arrangement
for n is obtained from some arrangement for n − 1 by
inserting n between some pair x, y of adjacent terms.
This operation increases the sum by nx + ny − xy =
n2− (n−x)(n− y), which is an increasing function of
both x and y. In particular, this difference is maximal
when x and y equal n − 1 and n − 2. Fortunately, this
yields precisely the difference between the claimed up-
per bound for n and the assumed upper bound for n−1,
completing the induction.

B-4 Suppose such a matrix A exists. If the eigenvalues of
A (over the complex numbers) are distinct, then there
exists a complex matrix C such that B = CAC−1 is
diagonal. Consequently, sinB is diagonal. But then
sinA = C−1(sinB)C must be diagonalizable, a con-
tradiction. Hence the eigenvalues of A are the same,
and A has a conjugate B = CAC−1 over the complex
numbers of the form

(

x y
0 x

)

.

A direct computation shows that

sinB =

(

sinx y · cosx
0 sinx

)

.

Since sinA and sinB are conjugate, their eigenvalues
must be the same, and so we must have sinx = 1. This
implies cosx = 0, so that sinB is the identity matrix,
as must be sinA, a contradiction. Thus A cannot exist.

Alternate solution (due to Craig Helfgott and Alex
Popa): De£ne both sinA and cosA by the usual power
series. Since A commutes with itself, the power series
identity

sin2 A+ cos2 A = I

holds. But if sinA is the given matrix, then by the above

identity, cos2 A must equal

(

0 −2 · 1996
0 0

)

which is

3



a nilpotent matrix. Thus cosA is also nilpotent. How-
ever, the square of any 2 × 2 nilpotent matrix must be
zero (e.g., by the Cayley-Hamilton theorem). This is a
contradiction.

B-5 Consider a 1 × n checkerboard, in which we write an
n-letter string, one letter per square. If the string is
balanced, we can cover each pair of adjacent squares
containing the same letter with a 1 × 2 domino, and
these will not overlap (because no three in a row can
be the same). Moreover, any domino is separated from
the next by an even number of squares, since they must
cover opposite letters, and the sequence must alternate
in between.

Conversely, any arrangement of dominoes where ad-
jacent dominoes are separated by an even number of
squares corresponds to a unique balanced string, once
we choose whether the string starts with X or O. In
other words, the number of balanced strings is twice
the number of acceptable domino arrangements.

We count these arrangements by numbering the squares
0, 1, . . . , n−1 and distinguishing whether the dominoes
start on even or odd numbers. Once this is decided, one
simply chooses whether or not to put a domino in each
eligible position. Thus we have 2bn/2c arrangements in
the £rst case and 2b(n−1)/2c in the second, but note that
the case of no dominoes has been counted twice. Hence
the number of balanced strings is

2b(n+2)/2c + 2b(n+1)/2c − 2.

B-6 We will prove the claim assuming only that the convex
hull of the points (ai, bi) contains the origin in its in-
terior. (Thanks to Marshall Buck for pointing out that
the last three words are necessary in the previous sen-
tence!) Let u = log x, v = log y so that the left-hand
side of the given equation is

(a1, b1) exp(a1u+ b1v)+ (a2, b2) exp(a2u+ b2v)+

· · ·+ (an, bn) exp(anu+ bnv). (1)

Now note that (1) is the gradient of the function

f(u, v) = exp(a1u+ b1v) + exp(a2u+ b2v)+

· · ·+ exp(anu+ bnv),

and so it suf£ces to show f has a critical point. We will
in fact show f has a global minimum.

Clearly we have

f(u, v) ≥ exp
(

max
i

(aiu+ biv)
)

.

Note that this maximum is positive for (u, v) 6= (0, 0):
if we had aiu + biv < 0 for all i, then the subset
ur + vs < 0 of the rs-plane would be a half-plane
containing all of the points (ai, bi), whose convex hull
would then not contain the origin, a contradiction.

The function maxi(aiu+ biv) is clearly continuous on
the unit circle u2 + v2 = 1, which is compact. Hence it
has a global minimum M > 0, and so for all u, v,

max
i

(aiu+ biv) ≥M
√

u2 + v2.

In particular, f ≥ n + 1 on the disk of radius
√

(n+ 1)/M . Since f(0, 0) = n, the in£mum of f
is the same over the entire uv-plane as over this disk,
which again is compact. Hence f attains its in£mal
value at some point in the disk, which is the desired
global minimum.

Noam Elkies has suggested an alternate solution as fol-
lows: for r > 0, draw the loop traced by (1) as (u, v)
travels counterclockwise around the circle u2+v2 = r2.
For r = 0, this of course has winding number 0 about
any point, but for r large, one can show this loop has
winding number 1 about the origin, so somewhere in
between the loop must pass through the origin. (Prov-
ing this latter fact is a little tricky.)
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