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A-1 If z and y are the sides of two squares with combined

areal, then 22 + y2 = 1. Suppose without loss of gen-
erality that x > y. Then the shorter side of arectangle
containing both squares without overlap must be at least
x, and the longer side must be at least « + y. Hence the
desired value of A isthe maximum of z(x + y).

To £nd this maximum, we let z = cos 8,y = sin § with
0 € [0,7/4]. Then we are to maximize

cos? 4+ sinfcos® =  —(1 + cos 20 + sin 260)
2
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with equality for 6 = 7 /8. Hence this value is the de-
sired value of A.

A-2 Let O, and O, be the centers of C; and C5, respec-

tively. (We are assuming C has radius 1 and Cy has
radius 3.) Then the desired locusis an annulus centered
at the midpoint of O;0,, with inner radius 1 and outer
radius 2.

For a£xed point Q on C>, the locus of the midpoints of
the segments PQ for P lying on C; isthe image of Cy
under a homothety centered at () of radius 1/2, which
isacircleof radius 1/2. As Q) varies, the center of this
smaller circletraces out acircle C; of radius 3/2 (again
by homothety). By considering the two positions of @
on the line of centers of the circles, one seesthat C5 is
centered at the midpoint of O, 04, and the locus is now
clearly the specifed annulus.

A-3 Theclaimisfase. Thereare (g) = 20 ways to choose

3 of the 6 courses; have each student choose a different
set of 3 courses. Then each pair of coursesis chosen by
4 students (corresponding to the four ways to complete
this pair to a set of 3 courses) and is not chosen by 4
students (corresponding to the 3-element subsets of the
remaining 4 courses).

Note: Assuming that no two students choose the same
courses, the above counterexampleis unique (up to per-
muting students). This may be seen asfollows: Given a
group of students, suppose that for any pair of courses
(among the six) there are at most 4 students taking both,
and at most 4 taking neither. Then there are at most
120 = (4 +4)(5) pairs (s, p), where s isastudent, and

p isaset of two courses of which s istaking either both
or none. On the other hand, if a student s is taking &
courses, then he/she oceursin f(k) = () + (°3%) such
pairs (s,p). As f(k) isminimized for k = 3, it follows
that every student occursin at least 6 = (3) + (3) such
pairs (s, p). Hencethere can beat most 120/6 = 20 stu-
dents, with equality only if each student takes 3 courses,
and for each set of two courses, there are exactly 4 stu-
dents who take both and exactly 4 who take neither.
Since there are only 4 ways to complete a given pair
of courses to a set of 3, and only 4 ways to choose 3
courses not containing the given pair, the only way for
there to be 20 students (under our hypotheses) isiif all
sets of 3 courses are in fact taken. This is the desired
conclusion.

However, Robin Chapman has pointed out that the so-
lution is not unique in the problem as stated, because a
given selection of courses may be made by more than
one student. One alternate solution is to identify the 6
courses with pairs of antipodal vertices of an icosahe-
dron, and have each student pick a different face and
choose the three vertices touching that face. In this ex-
ample, each of 10 selections is made by a pair of stu-
dents.

A-4 Infact, we will show that such afunction g exists with

the property that (a,b,c) € S if and only if g(d) <
g(e) < g(f) for some cyclic permutation (d, e, f) of
(a, b, c). We proceed by induction on the number of el-
ementsin A. If A = {a,b,c} and (a,b,c) € S, then
choose g with g(a) < g(b) < g(c), otherwise choose g
with g(a) > g(b) > g(c).

Now let z be an element of A and B = A — {z}.
Let ay,...,a, bethe elements of B labeled such that
g(a1) < g(az) < --- < g(a,). We claim that there ex-
istsauniquei € {1,...,n} suchthat (a;, z,a;+1) € S,
where hereafter a,, = ax.

We show existence £rst. Suppose no such i exists; then
foral i,k € {1,...,n}, we have (a;yr,2,a;) ¢ S.
This holds by property 1 for £ = 1 and by induction on
k in general, noting that

(ai+k+17 Zaai+k)7 (ai+k7 Z, ai) € S
= (@itks Gigrt1,2), (2,04, ai41) €S
= (Qitkt1,2,a;) €S.

Applying thiswhen & = n, we get (a;_1, 2,a;) € S,



contradicting the fact that (a;, z,a;_1) € S. Hence ex-
istence follows.

Now we show uniqueness. Suppose (a;,z,a;+1) €
S; then for any ;7 # i — 1,i,4 + 1, we have
(ai,ai_ﬂ,aj), (aj,aj_%l,ai) es by the assumption on
G. Therefore

(ai,z,ai+1), (aiH,aj,ai) eSS = (aj,ai,z) cs

(as, 2,a5), (aj,a41,0;) €S = (z,a5,a;41),
0 (aj,2,a;41) ¢ S. Thecasej = i+ 1 isruled out by
(@is 2, 0i41)s (@ig1, Gig2,05) € S = (2,a541,0i42) €S

andthecasej =i — 1 issimilar.

Finally, we put ¢g(z) in (g(a,),+o0) if i = n, and
(g9(a;),g(a;+1)) otherwise; an analysis similar to that
above shows that g has the desired property.

A-5 (dueto Lenny Ng) For 1 < n < p — 1, p divides ()

and

1(py 1p—1p—2 p—n+1
p\n) n 1 2 n—1

_1\n—1
= % (modp),

where the congruence z = y (mod p) meansthat z — y
isarational number whose numerator, in reduced form,
isdivisible by p. Hence it suf£ces to show that

k

Z % =0 (modp).
n=1

We distinguish two cases based on p (mod6). First
suppose p = 67 + 1, sothat & = 4r. Then

4r -1 n—1
> -

n=1
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sincep = 6r + 1.

Now supposep = 6r + 5, sothat k = 4r + 3. A similar

argument gives

4r+43 (_1)n_1
>
n=1
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A-6 We £rst consider the case ¢ < 1/4; we shall show in

this case f must be constant. Therelation

f@) = f(@® +c) = f((-2)* + ¢) = f(-2)

proves that f is an even function. Let r; < r, bethe
roots of z2 + ¢ — x, both of which arered. If © > 7o,
defne z¢g = x and z,,.1 = +/x,, — c for each positive
integer x. By inductionon n, ro < x,4+1 < x,, for al
n, so the sequence {x,,} tends to alimit L which isa
root of 22 +c¢ = z not lessthan r,. Of course thismeans
L = ry. Since f(z) = f(x,) fordl n and z,, — 7o,
we conclude f(z) = f(r2), so f isconstant on z > rs.

If ry <z < ryandax, isdekned as before, then by in-
duction, z,, < x,+1 < 72. Note that the sequence can
be defned because r; > ¢; the latter follows by noting
that the polynomial 22 — = + c ispositiveat x = c and
has its minimum at 1/2 > ¢, so both roots are greater
than c. Inany case, we deducethat f(z) isa so constant
onr; <z < ro.

Finally, suppose © < r1. Now deEne xg = =, xp41 =
22 +c. Giventhat z,, < 1, wehavez, 11 > x,. Thus
if wehad z,, < r; for al n, by the same argument asin
the £rst case we deduce x,, — 1 and so f(z) = f(r1).
Actually, this doesn’t happen; eventually we have z,, >
r1, inwhich case f(z) = f(z,) = f(r1) by what we
have already shown. We conclude that f is a constant
function. (Thanks to Marshall Buck for catching an in-
accuracy in aprevious version of this solution.)

Now suppose ¢ > 1/4. Then the sequence z,, defned
by zo = 0 and z,,.1 = 22 + c is strictly increasing
and has no limit point. Thus if we defne f on [z, 2]
as any continuous function with equal values on the
endpoaints, and extend the deEnition from [z ,,, ,,11] to
[Tni1, Tnie) by the rdation f(z) = f(z% + ¢), and
extend the defnition further to < 0 by the relation
f(z) = f(—=x), the resulting function has the desired
property. Moreover, any function with that property
clearly hasthisform.

B-1 Let [n] denote the set {1,2,...,n}, and let f,, denote

the number of minimal sel£sh subsets of [r]. Then the
number of minimal sel£sh subsets of [n] not containing



n isequa to f,,_1. On the other hand, for any mini-
mal self£sh subset of [n] containing n, by subtracting 1
from each element, and then taking away the element
n — 1 from the set, we obtain a minimal sel£sh subset
of [n — 2] (since 1 and n cannot both occur in asel£sh
set). Conversely, any minimal sel£sh subset of [n — 2]
gives rise to aminimal sel£sh subset of [n] containing
n by the inverse procedure. Hence the number of min-
imal self£sh subsets of [r] containing n is f,_2. Thus
weobtan f, = fn_1 + fn_2. Since f1 = fo = 1, we
have f, = F,, where F,, denotes the nth term of the
Fibonacci sequence.

B-2 By estimating the area under the graph of In x using up-

per and lower rectangles of width 2, we get

2n—1
/ Inzdr <2(In(3)+ -+ In(2n — 1))
1
2n-+1
§/ Inz dx.
3

Since [Inz dx = xInz — x + C, we have, upon expo-
nentiating and taking square roots,

2n—1

om—1\ 2 .
(” > <(@n—1)"7 ¢!

e
<1-3---(2n—1)

2n41 e—n+1
2n+1
<2n + 1> 2
< )
e
using thefact that 1 < e < 3.
B-3 View z1,...,x, as an arrangement of the numbers

1,2,...,n onacircle. We prove that the optimal ar-
rangement is

cooan—4n-2nn—-1n-3,...

To show this, notethat if a, b isapair of adjacent num-
bers and ¢, d is another pair (read in the same order
around the circle) with a < d and b > ¢, then the seg-
ment from b to ¢ can be reversed, increasing the sum

by
ac+bd—ab—cd=(d—a)(b—c)>0.

Now relabel the numbers so they appear in order asfol-
lows:

<oy n—4,0p—2,0np =T, Qn—1,0An-3, - - -

where without loss of generality we assume a,,_; >
Ap—a. By considering the pairs a,_2,a, and
Qp_1, 0,3 and using the trivia fact a,, > a,_1, we
deduce a,,_> > a,_3. We then compare the pairs
p—4,0n—o ad ap_1,a,_3, and using that a,_; >

Gn—2, We deduce a,,_3 > a,_4. Continuing in this
fashion, we prove that a,, > a1 > --- > a; and
soa, = kfork =1,2,...,n,i.e that the optimal ar-
rangement is as claimed. In particular, the maximum
value of thesumis

1-2+4(n—-1)n+1-34+2-4+---+(n—2)-n
=240 —n+(1*-1)+-+[n-1>-1]
(n—1Dn(2n—1)

=n?-n+2-(n—1)+

(=2}

_ 213 +3n2 — 1ln+ 18
= 5 .

Alternate solution: We prove by induction that the value
given above is an upper bound; it is clearly a lower
bound because of the arrangement given above. As
sumethisisthe casefor n—1. The optimal arrangement
for n is obtained from some arrangement for n — 1 by
inserting n between some pair x,y of adjacent terms.
This operation increases the sum by nz + ny — zy =
n? — (n—x)(n —y), whichisan increasing function of
both z and y. In particular, this difference is maximal
when x and y equal n — 1 and n — 2. Fortunately, this
yields precisely the difference between the claimed up-
per bound for n and the assumed upper bound for n — 1,
completing the induction.

B-4 Suppose such a matrix A exists. If the eigenvalues of

A (over the complex numbers) are distinct, then there
exists a complex matrix C such that B = CAC~ ! is
diagonal. Consequently, sin B is diagonal. But then
sin A = C~!(sin B)C must be diagonalizable, a con-
tradiction. Hence the eigenvalues of A are the same,
and A has aconjugate B = CAC~! over the complex
numbers of the form

Ty

0x )’

A direct computation shows that

sin B — (smx y'COSZC>.

0 sinx

Since sin A and sin B are conjugate, their eigenvalues
must be the same, and so we must have sinz = 1. This
implies cosx = 0, S0 that sin B is the identity matrix,
as must besin A, acontradiction. Thus A cannot exist.

Alternate solution (due to Craig Helfgott and Alex
Popa): DeEne both sin A and cos A by the usual power
series. Since A commutes with itself, the power series
identity

sinA+cos?A=1
holds. But if sin A isthe given matrix, then by the above

identity, cos> A must equal ( 8 -2 '01996 ) which is



a nilpotent matrix. Thus cos A is also nilpotent. How-
ever, the square of any 2 x 2 nilpotent matrix must be
zero (e.g., by the Cayley-Hamilton theorem). Thisisa
contradiction.

B-5 Consider a1 x n checkerboard, in which we write an

n-letter string, one letter per square. If the string is
balanced, we can cover each pair of adjacent squares
containing the same letter with a 1 x 2 domino, and
these will not overlap (because no three in a row can
be the same). Moreover, any domino is separated from
the next by an even number of squares, since they must
cover opposite letters, and the sequence must aternate
in between.

Conversely, any arrangement of dominoes where ad-
jacent dominoes are separated by an even number of
sguares corresponds to a unique balanced string, once
we choose whether the string starts with X or O. In
other words, the number of balanced strings is twice
the number of acceptable domino arrangements.

We count these arrangements by numbering the squares
0,1,...,n—1 and distinguishing whether the dominoes
start on even or odd numbers. Once thisis decided, one
simply chooses whether or not to put a domino in each
eligible position. Thus we have 21/2) arrangementsin
the £rst case and 2("~1)/2 in the second, but note that
the case of ho dominoes has been counted twice. Hence
the number of balanced stringsis

ol(n+2)/2) 4 ol(n+1)/2] _ o

B-6 We will prove the claim assuming only that the convex

hull of the points (a;, b;) contains the origin in its in-
terior. (Thanks to Marshall Buck for pointing out that
the last three words are necessary in the previous sen-
tence!) Let u = logz,v = logy so that the left-hand
side of the given equation is

(a1,b1) exp(aiu —+ byv) + (az, be) exp(asu + bav)+
et (ana bn) eXp(anu + bn“) (1)

Now note that (1) isthe gradient of the function

f(u,v) = exp(aju + b1v) + explasu + byv)+
ot e$p(anu + bnv)a

and so it suffces to show f hasacritical point. We will
in fact show f hasaglobal minimum.

Clearly we have
f(u,v) > exp (max(aiu + biv)) .

Note that this maximum is positive for (u,v) # (0,0):
if we had a;u + b;v < 0 for al 7, then the subset
ur + vs < 0 of the rs-plane would be a half-plane
containing all of the points (a;, b;), whose convex hull
would then not contain the origin, a contradiction.

The function max; (a;u + b;v) is clearly continuous on
the unit circle u? + v? = 1, which is compact. Hence it
has a global minimum M > 0, and so for al u, v,

max(a;u + bjv) > My/u? + v2.
K2

In particulear, f > n + 1 on the disk of radius
Vv (n+1)/M. Since f(0,0) = n, the inEmum of f
is the same over the entire uv-plane as over this disk,
which again is compact. Hence f attains its infEmal
value at some point in the disk, which is the desired
global minimum.

Noam Elkies has suggested an alternate solution as fol-
lows: for » > 0, draw the loop traced by (1) as (u,v)
travels counterclockwise around the circle u? +v? = r2.
For r = 0, this of course has winding number O about
any point, but for » large, one can show this loop has
winding number 1 about the origin, so somewhere in
between the loop must pass through the origin. (Prov-
ing thislatter fact isalittle tricky.)



