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A–1 The centroid G of the triangle is collinear with H and
O (Euler line), and the centroid lies two-thirds of the
way from A to M . Therefore H is also two-thirds of
the way from A to F , so AF = 15. Since the triangles
BFH and AFC are similar (they’re right triangles and
∠HBC = π/2−∠C = ∠CAF ), we haveBF/FH =
AF/FC, or BF · FC = FH · AF = 75. Now
BC2 = (BF+FC)2 = (BF−FC)2+4BF ·FC, but
BF −FC = BM +MF − (MC −MF ) = 2MF =
22, so

BC =
√

222 + 4 · 75 =
√

784 = 28.

A–2 We show more precisely that the game terminates with
one player holding all of the pennies if and only if
n = 2m + 1 or n = 2m + 2 for some m. First sup-
pose we are in the following situation for some k ≥ 2.
(Note: for us, a “move” consists of two turns, starting
with a one-penny pass.)

– Except for the player to move, each player has k
pennies;

– The player to move has at least k pennies.

We claim then that the game terminates if and only if
the number of players is a power of 2. First suppose
the number of players is even; then after m complete
rounds, every other player, starting with the player who
moved £rst, will havemmore pennies than initially, and
the others will all have 0. Thus we are reduced to the
situation with half as many players; by this process, we
eventually reduce to the case where the number of play-
ers is odd. However, if there is more than one player,
after two complete rounds everyone has as many pen-
nies as they did before (here we need m ≥ 2), so the
game fails to terminate. This veri£es the claim.

Returning to the original game, note that after one com-
plete round, bn−1

2 c players remain, each with 2 pennies
except for the player to move, who has either 3 or 4 pen-
nies. Thus by the above argument, the game terminates
if and only if bn−1

2 c is a power of 2, that is, if and only
if n = 2m + 1 or n = 2m + 2 for some m.

A–3 Note that the series on the left is simply x exp(−x2/2).
By integration by parts,

∫ ∞

0

x2n+1e−x2/2dx = 2n

∫ ∞

0

x2n−1e−x2/2dx

and so by induction,
∫ ∞

0

x2n+1e−x2/2dx = 2× 4× · · · × 2n.

Thus the desired integral is simply

∞
∑

n=0

1

2nn!
=
√
e.

A–4 In order to have ψ(x) = aφ(x) for all x, we must in par-
ticular have this for x = e, and so we take a = φ(e)−1.
We £rst note that

φ(g)φ(e)φ(g−1) = φ(e)φ(g)φ(g−1)

and so φ(g) commutes with φ(e) for all g. Next, we
note that

φ(x)φ(y)φ(y−1x−1) = φ(e)φ(xy)φ(y−1x−1)

and using the commutativity of φ(e), we deduce

φ(e)−1φ(x)φ(e)−1φ(y) = φ(e)−1φ(xy)

or ψ(xy) = ψ(x)ψ(y), as desired.

A–5 We may discard any solutions for which a1 6= a2, since
those come in pairs; so assume a1 = a2. Similarly, we
may assume that a3 = a4, a5 = a6, a7 = a8, a9 = a10.
Thus we get the equation

2/a1 + 2/a3 + 2/a5 + 2/a7 + 2/a9 = 1.

Again, we may assume a1 = a3 and a5 = a7, so we get
4/a1+4/a5+2/a9 = 1; and a1 = a5, so 8/a1+2/a9 =
1. This implies that (a1 − 8)(a9 − 2) = 16, which by
counting has 5 solutions. Thus N10 is odd.

A–6 Clearly xn+1 is a polynomial in c of degree n, so it suf-
£ces to identify n values of c for which xn+1 = 0. We
claim these are c = n−1−2r for r = 0, 1, . . . , n−1; in
this case, xk is the coef£cient of tk−1 in the polynomial
f(t) = (1 − t)r(1 + t)n−1−r. This can be veri£ed by
noticing that f satis£es the differential equation

f ′(t)

f(t)
=
n− 1− r

1 + t
− r

1− t
(by logarithmic differentiation) or equivalently,

(1− t2)f ′(t) = f(t)[(n− 1− r)(1− t)− r(1 + t)]

= f(t)[(n− 1− 2r)− (n− 1)t]



and then taking the coef£cient of tk on both sides:

(k + 1)xk+2 − (k − 1)xk =

(n− 1− 2r)xk+1 − (n− 1)xk.

In particular, the largest such c is n−1, and xk =
(

n−1
k−1

)

for k = 1, 2, . . . , n.

Greg Kuperberg has suggested an alternate approach to
show directly that c = n− 1 is the largest root, without
computing the others. Note that the condition xn+1 = 0
states that (x1, . . . , xn) is an eigenvector of the matrix

Aij =







i j = i+ 1
n− j j = i− 1

0 otherwise

with eigenvalue c. By the Perron-Frobenius theorem,
A has a unique eigenvector with positive entries, whose
eigenvalue has modulus greater than or equal to that of
any other eigenvalue, which proves the claim.

B–1 It is trivial to check that m
6n = {m

6n} ≤ { m
3n} for

1 ≤ m ≤ 2n, that 1 − m
3n = { m

3n} ≤ { m
6n} for

2n ≤ m ≤ 3n, that m
3n − 1 = { m

3n} ≤ { m
6n} for

3n ≤ m ≤ 4n, and that 2 − m
6n = { m

6n} ≤ { m
3n} for

4n ≤ m ≤ 6n. Therefore the desired sum is

2n−1
∑

m=1

m

6n
+

3n−1
∑

m=2n

(1− m

3n
)

+

4n−1
∑

m=3n

(
m

3n
− 1) +

6n−1
∑

m=4n

(

2− m

6n

)

= n.

B–2 It suf£ces to show that |f(x)| is bounded for x ≥ 0,
since f(−x) satis£es the same equation as f(x). But
then

d

dx

(

(f(x))2 + (f ′(x))2
)

= 2f ′(x)(f(x) + f ′′(x))

= −2xg(x)(f ′(x))2 ≤ 0,

so that (f(x))2 ≤ (f(0))2 + (f ′(0))2 for x ≥ 0.

B–3 The only such n are the numbers 1–4, 20–24, 100–104,
and 120–124. For the proof let

Hn =
n
∑

m=1

1

m

and introduce the auxiliary function

In =
∑

1≤m≤n,(m,5)=1

1

m
.

It is immediate (e.g., by induction) that In ≡
1,−1, 1, 0, 0 (mod 5) for n ≡ 1, 2, 3, 4, 5 (mod 5) re-
spectively, and moreover, we have the equality

Hn =

k
∑

m=0

1

5m
Ibn/5mc,

where k = k(n) denotes the largest integer such that
5k ≤ n. We wish to determine those n such that the
above sum has nonnegative 5–valuation. (By the 5–
valuation of a number a we mean the largest integer v
such that a/5v is an integer.)

If bn/5kc ≤ 3, then the last term in the above sum
has 5–valuation −k, since I1, I2, I3 each have valu-
ation 0; on the other hand, all other terms must have
5–valuation strictly larger than −k. It follows that Hn

has 5–valuation exactly −k; in particular, Hn has non-
negative 5–valuation in this case if and only if k = 0,
i.e., n = 1, 2, or 3.

Suppose now that bn/5kc = 4. Then we must also
have 20 ≤ bn/5k−1c ≤ 24. The former condition im-
plies that the last term of the above sum is I4/5k =
1/(12 · 5k−2), which has 5–valuation −(k − 2).

It is clear that I20 ≡ I24 ≡ 0 (mod 25); hence if
bn/5k−1c equals 20 or 24, then the second–to–last term
of the above sum (if it exists) has valuation at least
−(k − 3). The third–to–last term (if it exists) is of
the form Ir/5

k−2, so that the sum of the last term and
the third to last term takes the form (Ir + 1/12)/5k−2.
Since Ir can be congruent only to 0,1, or -1 (mod 5),
and 1/12 ≡ 3 (mod 5), we conclude that the sum of the
last term and third–to–last term has valuation−(k−2),
while all other terms have valuation strictly higher.
HenceHn has nonnegative 5–valuation in this case only
when k ≤ 2, leading to the values n = 4 (arising from
k = 0), 20,24 (arising from k = 1 and bn/5k−1c = 20
and 24 resp.), 101, 102, 103, and 104 (arising from
k = 2, bn/5k−1c = 20) and 120, 121, 122, 123, and
124 (arising from k = 2, bn/5k−1c = 24).

Finally, suppose bn/5kc = 4 and bn/5k−1c = 21, 22,
or 23. Then as before, the £rst condition implies that
the last term of the sum in (*) has valuation −(k − 2),
while the second condition implies that the second–to–
last term in the same sum has valuation−(k−1). Hence
all terms in the sum (*) have 5–valuation strictly higher
than −(k − 1), except for the second–to–last term, and
therefore Hn has 5–valuation −(k − 1) in this case. In
particular,Hn is integral (mod 5) in this case if and only
if k ≤ 1, which gives the additional values n = 21, 22,
and 23.

B–4 Let sk =
∑

i(−1)iak−1,i be the given sum (note that
ak−1,i is nonzero precisely for i = 0, . . . , b 2k

3 c). Since

am+1,n = am,n + am,n−1 + am,n−2,

we have

sk − sk−1 + sk+2

=
∑

i

(−1)i(an−i,i + an−i,i+1 + an−i,i+2)

=
∑

i

(−1)ian−i+1,i+2 = sk+3.
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By computing s0 = 1, s1 = 1, s2 = 0, we may eas-
ily verify by induction that s4j = s4j+1 = 1 and
s4j+2 = s4j+3 = 0 for all j ≥ 0. (Alternate so-
lution suggested by John Rickert: write S(x, y) =
∑∞

i=0(y + xy2 + x2y3)i, and note note that sk is the
coef£cient of yk in S(−1, y) = (1 + y)/(1− y4).)

B–5 De£ne the sequence x1 = 2, xn = 2xn−1 for n > 1.
It suf£ces to show that for every n, xm ≡ xm+1 ≡ · · ·
(mod n) for some m < n. We do this by induction on
n, with n = 2 being obvious.

Write n = 2ab, where b is odd. It suf£ces to show
that xm ≡ · · · modulo 2a and modulo b, for some
m < n. For the former, we only need xn−1 ≥ a,
but clearly xn−1 ≥ n by induction on n. For the lat-
ter, note that xm ≡ xm+1 ≡ · · · (mod b) as long as
xm−1 ≡ xm ≡ · · · (mod φ(b)), where φ(n) is the Eu-
ler totient function. By hypothesis, this occurs for some
m < φ(b) + 1 ≤ n. (Thanks to Anoop Kulkarni for
catching a lethal typo in an earlier version.)

B–6 The answer is 25/13. Place the triangle on the carte-
sian plane so that its vertices are at C = (0, 0), A =
(0, 3), B = (4, 0). It is easy to check that the £ve points
A,B,C,D = (20/13, 24/13), and E = (27/13, 0) are
all in the triangle and have distance at least 25/13 apart
from each other (note that DE = 25/13); thus any dis-
section of the triangle into four parts must have diame-
ter at least 25/13.

We now exhibit a dissection with least diameter 25/13.
(Some variations of this dissection are possible.) Put
F = (15/13, 19/13), G = (15/13, 0), H =
(0, 19/13), J = (32/15, 15/13), and divide ABC into
the convex polygonal regions ADFH , BEJ , CGFH ,
DFGEJ ; each region has diameter 25/13, as can be
veri£ed by checking the distance between each pair of
vertices of each polygon. (One need only check for the
pentagon: note that ADFH and BEJ are contained in
circular sectors centered atA andB, respectively, of ra-
dius 25/13 and angle less than π/3, and that CGFH is
a rectangle with diagonal CF < 25/13.)
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