# Solutions to the 58th William Lowell Putnam Mathematical Competition Saturday, December 6, 1997 

Manjul Bhargava, Kiran Kedlaya, and Lenny Ng

A-1 The centroid $G$ of the triangle is collinear with $H$ and $O$ (Euler line), and the centroid lies two-thirds of the way from $A$ to $M$. Therefore $H$ is also two-thirds of the way from $A$ to $F$, so $A F=15$. Since the triangles $B F H$ and $A F C$ are similar (they're right triangles and $\angle H B C=\pi / 2-\angle C=\angle C A F)$, we have $B F / F H=$ $A F / F C$, or $B F \cdot F C=F H \cdot A F=75$. Now $B C^{2}=(B F+F C)^{2}=(B F-F C)^{2}+4 B F \cdot F C$, but $B F-F C=B M+M F-(M C-M F)=2 M F=$ 22, so

$$
B C=\sqrt{22^{2}+4 \cdot 75}=\sqrt{784}=28
$$

A-2 We show more precisely that the game terminates with one player holding all of the pennies if and only if $n=2^{m}+1$ or $n=2^{m}+2$ for some $m$. First suppose we are in the following situation for some $k \geq 2$. (Note: for us, a "move" consists of two turns, starting with a one-penny pass.)

- Except for the player to move, each player has $k$ pennies;
- The player to move has at least $k$ pennies.

We claim then that the game terminates if and only if the number of players is a power of 2 . First suppose the number of players is even; then after $m$ complete rounds, every other player, starting with the player who moved £rst, will have $m$ more pennies than initially, and the others will all have 0 . Thus we are reduced to the situation with half as many players; by this process, we eventually reduce to the case where the number of players is odd. However, if there is more than one player, after two complete rounds everyone has as many pennies as they did before (here we need $m \geq 2$ ), so the game fails to terminate. This verifes the claim.
Returning to the original game, note that after one complete round, $\left\lfloor\frac{n-1}{2}\right\rfloor$ players remain, each with 2 pennies except for the player to move, who has either 3 or 4 pennies. Thus by the above argument, the game terminates if and only if $\left\lfloor\frac{n-1}{2}\right\rfloor$ is a power of 2 , that is, if and only if $n=2^{m}+1$ or $n=2^{m}+2$ for some $m$.

A-3 Note that the series on the left is simply $x \exp \left(-x^{2} / 2\right)$. By integration by parts,

$$
\int_{0}^{\infty} x^{2 n+1} e^{-x^{2} / 2} d x=2 n \int_{0}^{\infty} x^{2 n-1} e^{-x^{2} / 2} d x
$$

and so by induction,

$$
\int_{0}^{\infty} x^{2 n+1} e^{-x^{2} / 2} d x=2 \times 4 \times \cdots \times 2 n
$$

Thus the desired integral is simply

$$
\sum_{n=0}^{\infty} \frac{1}{2^{n} n!}=\sqrt{e}
$$

A-4 In order to have $\psi(x)=a \phi(x)$ for all $x$, we must in particular have this for $x=e$, and so we take $a=\phi(e)^{-1}$. We £rst note that

$$
\phi(g) \phi(e) \phi\left(g^{-1}\right)=\phi(e) \phi(g) \phi\left(g^{-1}\right)
$$

and so $\phi(g)$ commutes with $\phi(e)$ for all $g$. Next, we note that

$$
\phi(x) \phi(y) \phi\left(y^{-1} x^{-1}\right)=\phi(e) \phi(x y) \phi\left(y^{-1} x^{-1}\right)
$$

and using the commutativity of $\phi(e)$, we deduce

$$
\phi(e)^{-1} \phi(x) \phi(e)^{-1} \phi(y)=\phi(e)^{-1} \phi(x y)
$$

or $\psi(x y)=\psi(x) \psi(y)$, as desired.
A-5 We may discard any solutions for which $a_{1} \neq a_{2}$, since those come in pairs; so assume $a_{1}=a_{2}$. Similarly, we may assume that $a_{3}=a_{4}, a_{5}=a_{6}, a_{7}=a_{8}, a_{9}=a_{10}$. Thus we get the equation

$$
2 / a_{1}+2 / a_{3}+2 / a_{5}+2 / a_{7}+2 / a_{9}=1
$$

Again, we may assume $a_{1}=a_{3}$ and $a_{5}=a_{7}$, so we get $4 / a_{1}+4 / a_{5}+2 / a_{9}=1$; and $a_{1}=a_{5}$, so $8 / a_{1}+2 / a_{9}=$ 1. This implies that $\left(a_{1}-8\right)\left(a_{9}-2\right)=16$, which by counting has 5 solutions. Thus $N_{10}$ is odd.
A-6 Clearly $x_{n+1}$ is a polynomial in $c$ of degree $n$, so it suf£ces to identify $n$ values of $c$ for which $x_{n+1}=0$. We claim these are $c=n-1-2 r$ for $r=0,1, \ldots, n-1$; in this case, $x_{k}$ is the coeffcient of $t^{k-1}$ in the polynomial $f(t)=(1-t)^{r}(1+t)^{n-1-r}$. This can be verifed by noticing that $f$ satisfes the differential equation

$$
\frac{f^{\prime}(t)}{f(t)}=\frac{n-1-r}{1+t}-\frac{r}{1-t}
$$

(by logarithmic differentiation) or equivalently,

$$
\begin{aligned}
\left(1-t^{2}\right) f^{\prime}(t) & =f(t)[(n-1-r)(1-t)-r(1+t)] \\
& =f(t)[(n-1-2 r)-(n-1) t]
\end{aligned}
$$

and then taking the coeffcient of $t^{k}$ on both sides:

$$
\begin{gathered}
(k+1) x_{k+2}-(k-1) x_{k}= \\
(n-1-2 r) x_{k+1}-(n-1) x_{k} .
\end{gathered}
$$

In particular, the largest such $c$ is $n-1$, and $x_{k}=\binom{n-1}{k-1}$ for $k=1,2, \ldots, n$.
Greg Kuperberg has suggested an alternate approach to show directly that $c=n-1$ is the largest root, without computing the others. Note that the condition $x_{n+1}=0$ states that $\left(x_{1}, \ldots, x_{n}\right)$ is an eigenvector of the matrix

$$
A_{i j}=\left\{\begin{array}{cc}
i & j=i+1 \\
n-j & j=i-1 \\
0 & \text { otherwise }
\end{array}\right.
$$

with eigenvalue $c$. By the Perron-Frobenius theorem, $A$ has a unique eigenvector with positive entries, whose eigenvalue has modulus greater than or equal to that of any other eigenvalue, which proves the claim.

B-1 It is trivial to check that $\frac{m}{6 n}=\left\{\frac{m}{6 n}\right\} \leq\left\{\frac{m}{3 n}\right\}$ for $1 \leq m \leq 2 n$, that $1-\frac{m}{3 n}=\left\{\frac{m}{3 n}\right\} \leq\left\{\frac{m}{6 n}\right\}$ for $2 n \leq m \leq 3 n$, that $\frac{m}{3 n}-1=\left\{\frac{m}{3 n}\right\} \leq\left\{\frac{m}{6 n}\right\}$ for $3 n \leq m \leq 4 n$, and that $2-\frac{m}{6 n}=\left\{\frac{m}{6 n}\right\} \leq\left\{\frac{m}{3 n}\right\}$ for $4 n \leq m \leq 6 n$. Therefore the desired sum is

$$
\begin{gathered}
\sum_{m=1}^{2 n-1} \frac{m}{6 n}+\sum_{m=2 n}^{3 n-1}\left(1-\frac{m}{3 n}\right) \\
+\sum_{m=3 n}^{4 n-1}\left(\frac{m}{3 n}-1\right)+\sum_{m=4 n}^{6 n-1}\left(2-\frac{m}{6 n}\right)=n .
\end{gathered}
$$

B-2 It suffces to show that $|f(x)|$ is bounded for $x \geq 0$, since $f(-x)$ satisfes the same equation as $f(x)$. But then

$$
\begin{aligned}
\frac{d}{d x}\left((f(x))^{2}+\left(f^{\prime}(x)\right)^{2}\right) & =2 f^{\prime}(x)\left(f(x)+f^{\prime \prime}(x)\right) \\
& =-2 x g(x)\left(f^{\prime}(x)\right)^{2} \leq 0
\end{aligned}
$$

so that $(f(x))^{2} \leq(f(0))^{2}+\left(f^{\prime}(0)\right)^{2}$ for $x \geq 0$.
B-3 The only such $n$ are the numbers $1-4,20-24,100-104$, and 120-124. For the proof let

$$
H_{n}=\sum_{m=1}^{n} \frac{1}{m}
$$

and introduce the auxiliary function

$$
I_{n}=\sum_{1 \leq m \leq n,(m, 5)=1} \frac{1}{m} .
$$

It is immediate (e.g., by induction) that $I_{n} \equiv$ $1,-1,1,0,0(\bmod 5)$ for $n \equiv 1,2,3,4,5(\bmod 5)$ respectively, and moreover, we have the equality

$$
H_{n}=\sum_{m=0}^{k} \frac{1}{5^{m}} I_{\left\lfloor n / 5^{m}\right\rfloor}
$$

where $k=k(n)$ denotes the largest integer such that $5^{k} \leq n$. We wish to determine those $n$ such that the above sum has nonnegative 5 -valuation. (By the $5-$ valuation of a number $a$ we mean the largest integer $v$ such that $a / 5^{v}$ is an integer.)
If $\left\lfloor n / 5^{k}\right\rfloor \leq 3$, then the last term in the above sum has 5 -valuation $-k$, since $I_{1}, I_{2}, I_{3}$ each have valuation 0 ; on the other hand, all other terms must have 5-valuation strictly larger than $-k$. It follows that $H_{n}$ has 5-valuation exactly $-k$; in particular, $H_{n}$ has nonnegative 5-valuation in this case if and only if $k=0$, i.e., $n=1,2$, or 3 .

Suppose now that $\left\lfloor n / 5^{k}\right\rfloor=4$. Then we must also have $20 \leq\left\lfloor n / 5^{k-1}\right\rfloor \leq 24$. The former condition implies that the last term of the above sum is $I_{4} / 5^{k}=$ $1 /\left(12 \cdot 5^{k-2}\right)$, which has 5-valuation $-(k-2)$.
It is clear that $I_{20} \equiv I_{24} \equiv 0(\bmod 25)$; hence if $\left\lfloor n / 5^{k-1}\right\rfloor$ equals 20 or 24 , then the second-to-last term of the above sum (if it exists) has valuation at least $-(k-3)$. The third-to-last term (if it exists) is of the form $I_{r} / 5^{k-2}$, so that the sum of the last term and the third to last term takes the form $\left(I_{r}+1 / 12\right) / 5^{k-2}$. Since $I_{r}$ can be congruent only to 0,1 , or $-1(\bmod 5)$, and $1 / 12 \equiv 3(\bmod 5)$, we conclude that the sum of the last term and third-to-last term has valuation $-(k-2)$, while all other terms have valuation strictly higher. Hence $H_{n}$ has nonnegative 5-valuation in this case only when $k \leq 2$, leading to the values $n=4$ (arising from $k=0$ ), 20,24 (arising from $k=1$ and $\left\lfloor n / 5^{k-1}\right\rfloor=20$ and 24 resp.), 101, 102, 103, and 104 (arising from $\left.k=2,\left\lfloor n / 5^{k-1}\right\rfloor=20\right)$ and $120,121,122,123$, and 124 (arising from $k=2,\left\lfloor n / 5^{k-1}\right\rfloor=24$ ).
Finally, suppose $\left\lfloor n / 5^{k}\right\rfloor=4$ and $\left\lfloor n / 5^{k-1}\right\rfloor=21,22$, or 23 . Then as before, the frst condition implies that the last term of the sum in $(*)$ has valuation $-(k-2)$, while the second condition implies that the second-tolast term in the same sum has valuation $-(k-1)$. Hence all terms in the sum $\left(^{*}\right)$ have 5 -valuation strictly higher than $-(k-1)$, except for the second-to-last term, and therefore $H_{n}$ has 5 -valuation $-(k-1)$ in this case. In particular, $H_{n}$ is integral $(\bmod 5)$ in this case if and only if $k \leq 1$, which gives the additional values $n=21,22$, and 23 .

B-4 Let $s_{k}=\sum_{i}(-1)^{i} a_{k-1, i}$ be the given sum (note that $a_{k-1, i}$ is nonzero precisely for $\left.i=0, \ldots,\left\lfloor\frac{2 k}{3}\right\rfloor\right)$. Since

$$
a_{m+1, n}=a_{m, n}+a_{m, n-1}+a_{m, n-2},
$$

we have

$$
\begin{aligned}
s_{k}-s_{k-1} & +s_{k+2} \\
& =\sum_{i}(-1)^{i}\left(a_{n-i, i}+a_{n-i, i+1}+a_{n-i, i+2}\right) \\
& =\sum_{i}(-1)^{i} a_{n-i+1, i+2}=s_{k+3} .
\end{aligned}
$$

By computing $s_{0}=1, s_{1}=1, s_{2}=0$, we may easily verify by induction that $s_{4 j}=s_{4 j+1}=1$ and $s_{4 j+2}=s_{4 j+3}=0$ for all $j \geq 0$. (Alternate solution suggested by John Rickert: write $S(x, y)=$ $\sum_{i=0}^{\infty}\left(y+x y^{2}+x^{2} y^{3}\right)^{i}$, and note note that $s_{k}$ is the coeffcient of $y^{k}$ in $S(-1, y)=(1+y) /\left(1-y^{4}\right)$.)

B-5 Defne the sequence $x_{1}=2, x_{n}=2^{x_{n-1}}$ for $n>1$. It suffces to show that for every $n, x_{m} \equiv x_{m+1} \equiv \cdots$ $(\bmod n)$ for some $m<n$. We do this by induction on $n$, with $n=2$ being obvious.

Write $n=2^{a} b$, where $b$ is odd. It suffces to show that $x_{m} \equiv \cdots$ modulo $2^{a}$ and modulo $b$, for some $m<n$. For the former, we only need $x_{n-1} \geq a$, but clearly $x_{n-1} \geq n$ by induction on $n$. For the latter, note that $x_{m} \equiv x_{m+1} \equiv \cdots(\bmod b)$ as long as $x_{m-1} \equiv x_{m} \equiv \cdots(\bmod \phi(b))$, where $\phi(n)$ is the Euler totient function. By hypothesis, this occurs for some $m<\phi(b)+1 \leq n$. (Thanks to Anoop Kulkarni for catching a lethal typo in an earlier version.)

B-6 The answer is $25 / 13$. Place the triangle on the cartesian plane so that its vertices are at $C=(0,0), A=$ $(0,3), B=(4,0)$. It is easy to check that the $£$ ve points $A, B, C, D=(20 / 13,24 / 13)$, and $E=(27 / 13,0)$ are all in the triangle and have distance at least $25 / 13$ apart from each other (note that $D E=25 / 13$ ); thus any dissection of the triangle into four parts must have diameter at least $25 / 13$.

We now exhibit a dissection with least diameter 25/13. (Some variations of this dissection are possible.) Put $F=(15 / 13,19 / 13), G=(15 / 13,0), H=$ ( $0,19 / 13$ ), $J=(32 / 15,15 / 13)$, and divide $A B C$ into the convex polygonal regions $A D F H, B E J, C G F H$, $D F G E J$; each region has diameter $25 / 13$, as can be veri£ed by checking the distance between each pair of vertices of each polygon. (One need only check for the pentagon: note that $A D F H$ and $B E J$ are contained in circular sectors centered at $A$ and $B$, respectively, of radius $25 / 13$ and angle less than $\pi / 3$, and that $C G F H$ is a rectangle with diagonal $C F<25 / 13$.)

