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A-1 The centroid G of the triangle is collinear with H and
O (Euler line), and the centroid lies two-thirds of the
way from A to M. Therefore H is also two-thirds of
the way from A to F', so AF = 15. Since the triangles
BFH and AFC are similar (they’re right triangles and
/ZHBC =n/2—/C = ZCAF),wehave BF/FH =
AF/FC, or BF - FC = FH - AF = 75. Now
BC? = (BF+FC)? = (BF—-FC)?>+4BF-FC, but
BF —FC = BM +MF — (MC — MF) =2MF =
22,50

BC =+/222+4-75=+/784 = 28.

A-2 We show more precisely that the game terminates with
one player holding all of the pennies if and only if
n =2"+10rn = 2™ + 2 for some m. First sup-
pose we are in the following situation for some £ > 2.
(Note: for us, a “move” consists of two turns, starting
with a one-penny pass.)

— Except for the player to move, each player has &
pennies;

— The player to move has at least & pennies.

We claim then that the game terminates if and only if
the number of players is a power of 2. First suppose
the number of players is even; then after m complete
rounds, every other player, starting with the player who
moved £rst, will have m more pennies than initially, and
the others will all have 0. Thus we are reduced to the
situation with half as many players; by this process, we
eventually reduce to the case where the number of play-
ers is odd. However, if there is more than one player,
after two complete rounds everyone has as many pen-
nies as they did before (here we need m > 2), so the
game fails to terminate. This veri£es the claim.

Returning to the original game, note that after one com-
plete round, | 51 | players remain, each with 2 pennies
except for the player to move, who has either 3 or 4 pen-
nies. Thus by the above argument, the game terminates
if and only if [ 25 | is a power of 2, that is, if and only
if n =2" 4+ 10rn = 2"+ 2 for some m.

A-3 Note that the series on the left is simply x exp(—z2/2).
By integration by parts,

o0 2 o 2
/ 22 He= 2y = Qn/ 2 e 2y
0 0

and so by induction,
/ 22 /20r — 9 x 4 x - x 2.
0

Thus the desired integral is simply

o0

1
Z onpl Ve.

n=0

A-4 Inorder to have ¢ (z) = a¢(x) for all 2, we must in par-
ticular have this for z = e, and so we take a = ¢(e) L.
We £rst note that

P(g)p(e)p(g") = d(e)d(9)d(g™)

and so ¢(g) commutes with ¢(e) for all g. Next, we
note that

$(2)p(y)p(y~'at) = gle)play)d(y =)
and using the commutativity of ¢(e), we deduce
¢(e) ' o(z)d(e) oly) = dle) ' d(ay)
or ¢ (zy) = ¥(x)Y(y), as desired.

A-5 We may discard any solutions for which a; # ao, since
those come in pairs; so assume a; = ao. Similarly, we
may assume that as = a4, as = ag, a7 = ag, ag = aig.
Thus we get the equation

2/&1 —|—2/a3—|—2/a5—|—2/a7—|—2/a9 =1.

Again, we may assume a; = ag and a5 = a7, SO we get
4/a1+4/as+2/ag = 1;and a; = as5,508/a1+2/ag =
1. This implies that (a1 — 8)(ag — 2) = 16, which by
counting has 5 solutions. Thus N is odd.

A6 Clearly z,,, is a polynomial in ¢ of degree n, so it suf-
£ces to identify n values of ¢ for which x,, .1 = 0. We
claimthesearec =n—1-2rforr =0,1,...,n—1;in
this case, x, is the coefEcient of ¢~ in the polynomial
f(t) = (1 —t)"(1 + t)»~1=". This can be verifed by
noticing that f satistes the differential equation

f'@) _n—1-r 7
fit) 1+t 1—t
(by logarithmic differentiation) or equivalently,
A=)f' ) = fOlln -1 =11 ~1t) = r(1+1)]
=f®ln—1=2r) = (n—1)]




B-1

B-2

B-3

and then taking the coeffcient of £* on both sides:

(k' + 1)-Tk+2 — (k’ — 1)$;€ =
(n—1-=2r)xgr1 — (n— 1)ag.

In particular, the largest such cisn—1,and z, = (}~})
fork=1,2,...,n.

Greg Kuperberg has suggested an alternate approach to
show directly that ¢ = n — 1 is the largest root, without
computing the others. Note that the condition z,, ;1 =0
states that (x4, ..., x,) is an eigenvector of the matrix

i j=i+1
n—j j=i—1
0  otherwise

Aij =

with eigenvalue c. By the Perron-Frobenius theorem,
A has a unique eigenvector with positive entries, whose
eigenvalue has modulus greater than or equal to that of
any other eigenvalue, which proves the claim.

It is trivial to check that &+ = {g-} < {5} for
1 <m < 2n,that 1 — 3+ = {3~} < {g-} for
2n < m < 3n, that 3> — 1 = {Smn} < {%}for
3n <m < 4n,and that 2 — 2% = {g+} < {*} for
4n < m < 6n. Therefore the desired sum is

2n—1 m 3n—1 m

- 1_ .
Dot 2 (-2
m=1 m=2n
4n—1 m 6n—1 m
m_y (2 — —) —n.

It sufEces to show that | f(x)| is bounded for x > 0,
since f(—x) satisEes the same equation as f(x). But
then

(@) + (F@)?) = 2 @) (@) + (@)
= —20g(a)(/'(2))” <0,
so that (7(x))? < (£(0))* + (f'(0))? for # > 0.

The only such n are the numbers 1-4, 20-24, 100-104,
and 120-124. For the proof let

"1
Hy=) —

m=1

<

and introduce the auxiliary function
1
I, = > —.
1<m<n,(m,5)=1

It is immediate (e.g., by induction) that I,, =
1,-1,1,0,0 (mod 5) for n = 1,2,3,4,5 (mod 5) re-
spectively, and moreover, we have the equality

k
1
H, = Z 5_mI|_n/5mj7

m=0

where k = k(n) denotes the largest integer such that
5% < n. We wish to determine those n such that the
above sum has nonnegative 5-valuation. (By the 5-
valuation of a number a we mean the largest integer v
such that a/5" is an integer.)

If [n/5%] < 3, then the last term in the above sum
has 5-valuation —k, since I, I, I3 each have valu-
ation 0; on the other hand, all other terms must have
5-valuation strictly larger than —k. It follows that H,,
has 5-valuation exactly —k; in particular, H,, has non-
negative 5-valuation in this case if and only if £ = 0,
ie,n=1,2, or3.

Suppose now that |n/5%| = 4. Then we must also
have 20 < [n/5%=1| < 24. The former condition im-
plies that the last term of the above sum is I;/5% =
1/(12 - 5¥=2), which has 5-valuation —(k — 2).

It is clear that I = Is4 = 0 (mod 25); hence if
|n/5%~1 | equals 20 or 24, then the second-to—last term
of the above sum (if it exists) has valuation at least
—(k — 3). The third-to—last term (if it exists) is of
the form I,./5%=2, so that the sum of the last term and
the third to last term takes the form (I, + 1/12) /52,
Since I,. can be congruent only to 0,1, or -1 (mod 5),
and 1/12 = 3 (mod 5), we conclude that the sum of the
last term and third—to—last term has valuation —(k — 2),
while all other terms have valuation strictly higher.
Hence H,, has nonnegative 5-valuation in this case only
when &k < 2, leading to the values n = 4 (arising from
k = 0), 20,24 (arising from k = 1 and [n/5*71| = 20
and 24 resp.), 101, 102, 103, and 104 (arising from
k =2, [n/5*71| = 20) and 120, 121, 122, 123, and
124 (arising from k = 2, [n/58~1] = 24).

Finally, suppose |n/5%] = 4 and |n/5%"1] = 21, 22,
or 23. Then as before, the £rst condition implies that
the last term of the sum in (*) has valuation —(k — 2),
while the second condition implies that the second—-to—
last term in the same sum has valuation —(k—1). Hence
all terms in the sum (*) have 5-valuation strictly higher
than —(k — 1), except for the second-to—last term, and
therefore H,, has 5-valuation —(k — 1) in this case. In
particular, H,, is integral (mod 5) in this case if and only
if & < 1, which gives the additional values n = 21, 22,
and 23.

B-4 Lets, = >_,(—1)%a,—_1; be the given sum (note that

ak—1,; is nonzero precisely fori =0, ..., [%J). Since
Um+1,n = Am,n + Am,n—1 + Am,n—2,

we have

Sk — Sk—1 + Sk+2

= Z(—l)i(anﬂ',i + Uil + Oniit2)

=Y (1)t it1ir2 = ki
%



B-5

By computing sp = 1,51 = 1,52 = 0, we may eas-
ily verify by induction that ss; = ss4541 = 1 and
S4j+2 = Saj43 = 0 forall j > 0. (Alternate so-
lution suggested by John Rickert: write S(z,y) =
S oy + xy? + 2%y3)t, and note note that sy, is the
coefEcient of y* in S(—1,y) = (1 +y)/(1 —y*).)

Defne the sequence 1 = 2, z,, = 2%~-! forn > 1.
It sufEces to show that for every n, z,, = 1 = - -
(mod n) for some m < n. We do this by induction on
n, With n = 2 being obvious.

Write n = 2%b, where b is odd. It suffces to show
that z,, = --- modulo 2% and modulo b, for some
m < n. For the former, we only need x,_1 > a,
but clearly x,,_1 > n by induction on n. For the lat-
ter, note that ,,, = z,41 = --- (mod b) as long as
Tp—1 = Ty = -+ (mod ¢(b)), where ¢(n) is the Eu-
ler totient function. By hypothesis, this occurs for some
m < ¢(b) + 1 < n. (Thanks to Anoop Kulkarni for
catching a lethal typo in an earlier version.)

B-6 The answer is 25/13. Place the triangle on the carte-

sian plane so that its vertices are at C' = (0,0),A =
(0,3), B = (4,0). Itis easy to check that the £ve points
A,B,C,D = (20/13,24/13),and E = (27/13,0) are
all in the triangle and have distance at least 25/13 apart
from each other (note that DE = 25/13); thus any dis-
section of the triangle into four parts must have diame-
ter at least 25/13.

We now exhibit a dissection with least diameter 25/13.
(Some variations of this dissection are possible.) Put
F = (15/13,19/13), G = (15/13,0), H =
(0,19/13), J = (32/15,15/13), and divide ABC' into
the convex polygonal regions ADFH, BEJ, CGFH,
DFGE/J; each region has diameter 25/13, as can be
verifed by checking the distance between each pair of
vertices of each polygon. (One need only check for the
pentagon: note that ADF H and BEJ are contained in
circular sectors centered at A and B, respectively, of ra-
dius 25/13 and angle less than /3, and that CGF H is
a rectangle with diagonal CF < 25/13.)



