The 61st William Lowell Putnam Mathematical Competition Saturday, December 2, 2000 - A-1 Let A be a positive real number. What are the possible values of $\sum_{j=0}^{\infty} x_j^2$, given that x_0, x_1, \ldots are positive numbers for which $\sum_{j=0}^{\infty} x_j = A$? - A-2 Prove that there exist in£nitely many integers n such that n, n+1, n+2 are each the sum of the squares of two integers. [Example: $0 = 0^2 + 0^2$, $1 = 0^2 + 1^2$, $2 = 1^2 + 1^2$.] - A-3 The octagon $P_1P_2P_3P_4P_5P_6P_7P_8$ is inscribed in a circle, with the vertices around the circumference in the given order. Given that the polygon $P_1P_3P_5P_7$ is a square of area 5, and the polygon $P_2P_4P_6P_8$ is a rectangle of area 4, £nd the maximum possible area of the octagon. - A-4 Show that the improper integral $$\lim_{B \to \infty} \int_0^B \sin(x) \sin(x^2) \, dx$$ converges. - A-5 Three distinct points with integer coordinates lie in the plane on a circle of radius r > 0. Show that two of these points are separated by a distance of at least $r^{1/3}$. - A-6 Let f(x) be a polynomial with integer coefficients. Define a sequence a_0, a_1, \ldots of integers such that $a_0 = 0$ and $a_{n+1} = f(a_n)$ for all $n \ge 0$. Prove that if there exists a positive integer m for which $a_m = 0$ then either $a_1 = 0$ or $a_2 = 0$. - B-1 Let a_j, b_j, c_j be integers for $1 \le j \le N$. Assume for each j, at least one of a_j, b_j, c_j is odd. Show that there exist integers r, s, t such that $ra_j + sb_j + tc_j$ is odd for at least 4N/7 values of j, $1 \le j \le N$. B-2 Prove that the expression $$\frac{\gcd(m,n)}{n}\binom{n}{m}$$ is an integer for all pairs of integers $n \geq m \geq 1$. B-3 Let $f(t) = \sum_{j=1}^{N} a_j \sin(2\pi j t)$, where each a_j is real and a_N is not equal to 0. Let N_k denote the number of zeroes (including multiplicities) of $\frac{d^k f}{dt^k}$. Prove that $$N_0 \le N_1 \le N_2 \le \cdots$$ and $\lim_{k \to \infty} N_k = 2N$. [Editorial clari£cation: only zeroes in [0,1) should be counted.] - B-4 Let f(x) be a continuous function such that $f(2x^2-1)=2xf(x)$ for all x. Show that f(x)=0 for $-1\leq x\leq 1$. - B-5 Let S_0 be a £nite set of positive integers. We de£ne £nite sets S_1, S_2, \ldots of positive integers as follows: the integer a is in S_{n+1} if and only if exactly one of a-1 or a is in S_n . Show that there exist in£nitely many integers N for which $S_N = S_0 \cup \{N+a: a \in S_0\}$. - B-6 Let B be a set of more than $2^{n+1}/n$ distinct points with coordinates of the form $(\pm 1, \pm 1, \ldots, \pm 1)$ in n-dimensional space with $n \geq 3$. Show that there are three distinct points in B which are the vertices of an equilateral triangle.