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A1 By differentiating Pn(x)/(xk − 1)n+1, we find that
Pn+1(x) = (xk−1)P ′n(x)− (n+1)kxk−1Pn(x); sub-
stituting x = 1 yields Pn+1(1) = −(n + 1)kPn(1).
SinceP0(1) = 1, an easy induction givesPn(1) =
(−k)nn! for all n ≥ 0.

Note: one can also argue by expanding in Taylor series
around1. Namely, we have

1
xk − 1

=
1

k(x− 1) + · · ·
=

1
k

(x− 1)−1 + · · · ,

so

dn

dxn

1
xk − 1

=
(−1)nn!

k(x− 1)−n−1

and

Pn(x) = (xk − 1)n+1 dn

dxn

1
xk − 1

= (k(x− 1) + · · · )n+1(
(−1)nn!

k
(x− 1)−n−1 + · · ·

)
= (−k)nn! + · · · .

A2 Draw a great circle through two of the points. There are
two closed hemispheres with this great circle as bound-
ary, and each of the other three points lies in one of
them. By the pigeonhole principle, two of those three
points lie in the same hemisphere, and that hemisphere
thus contains four of the five given points.

Note: by a similar argument, one can prove that among
anyn+3 points on ann-dimensional sphere, somen+2
of them lie on a closed hemisphere. (One cannot get by
with only n+2 points: put them at the vertices of a reg-
ular simplex.) Namely, anyn of the points lie on a great
sphere, which forms the boundary of two hemispheres;
of the remaining three points, some two lie in the same
hemisphere.

A3 Note that each of the sets{1}, {2}, . . . , {n} has the
desired property. Moreover, for each setS with in-
teger averagem that does not containm, S ∪ {m}
also has averagem, while for each setT of more than
one element with integer averagem that containsm,
T \{m} also has averagem. Thus the subsets other than
{1}, {2}, . . . , {n} can be grouped in pairs, soTn −n is
even.

A4 (partly due to David Savitt) Player 0 wins with opti-
mal play. In fact, we prove that Player 1 cannot prevent
Player 0 from creating a row of all zeroes, a column of
all zeroes, or a2 × 2 submatrix of all zeroes. Each of
these forces the determinant of the matrix to be zero.

For i, j = 1, 2, 3, let Aij denote the position in rowi
and columnj. Without loss of generality, we may as-
sume that Player 1’s first move is atA11. Player 0 then
plays atA22: 1 ∗ ∗

∗ 0 ∗
∗ ∗ ∗


After Player 1’s second move, at least one ofA23 and
A32 remains vacant. Without loss of generality, assume
A23 remains vacant; Player 0 then plays there.

After Player 1’s third move, Player 0 wins by playing at
A21 if that position is unoccupied. So assume instead
that Player 1 has played there. Thus of Player 1’s three
moves so far, two are atA11 andA21. Hence fori equal
to one of 1 or 3, and forj equal to one of 2 or 3, the
following are both true:

(a) The2 × 2 submatrix formed by rows 2 andi and
by columns 2 and 3 contains two zeroes and two
empty positions.

(b) Columnj contains one zero and two empty posi-
tions.

Player 0 next plays atAij . To prevent a zero column,
Player 1 must play in columnj, upon which Player 0
completes the2× 2 submatrix in (a) for the win.

Note: one can also solve this problem directly by mak-
ing a tree of possible play sequences. This tree can be
considerably collapsed using symmetries: the symme-
try between rows and columns, the invariance of the
outcome under reordering of rows or columns, and the
fact that the scenario after a sequence of moves does
not depend on the order of the moves (sometimes called
“transposition invariance”).

Note (due to Paul Cheng): one can reduce Determi-
nant Tic-Tac-Toe to a variant of ordinary tic-tac-toe.
Namely, consider a tic-tac-toe grid labeled as follows:

A11 A22 A33

A23 A31 A12

A32 A13 A21



Then each term in the expansion of the determinant oc-
curs in a row or column of the grid. Suppose Player
1 first plays in the top left. Player 0 wins by playing
first in the top row, and second in the left column. Then
there are only one row and column left for Player 1 to
threaten, and Player 1 cannot already threaten both on
the third move, so Player 0 has time to block both.

A5 It suffices to prove that for any relatively prime positive
integersr, s, there exists an integern with an = r and
an+1 = s. We prove this by induction onr+s, the case
r + s = 2 following from the fact thata0 = a1 = 1.
Givenr ands not both 1 withgcd(r, s) = 1, we must
haver 6= s. If r > s, then by the induction hypothesis
we havean = r − s andan+1 = s for somen; then
a2n+2 = r anda2n+3 = s. If r < s, then we have
an = r andan+1 = s− r for somen; thena2n+1 = r
anda2n+2 = s.

Note: a related problem is as follows. Starting with the
sequence

0
1
,
1
0
,

repeat the following operation: insert between each pair
a
b and c

d the paira+c
b+d . Prove that each positive rational

number eventually appears.

Observe that by induction, ifab and c
d are consecutive

terms in the sequence, thenbc − ad = 1. The same
holds for consecutive terms of then-th Farey sequence,
the sequence of rational numbers in[0, 1] with denomi-
nator (in lowest terms) at mostn.

A6 The sum converges forb = 2 and diverges forb ≥ 3.
We first considerb ≥ 3. Suppose the sum converges;
then the fact thatf(n) = nf(d) wheneverbd−1 ≤ n ≤
bd − 1 yields

∞∑
n=1

1
f(n)

=
∞∑

d=1

1
f(d)

bd−1∑
n=bd−1

1
n

. (1)

However, by comparing the integral of1/x with a Rie-
mann sum, we see that

bd−1∑
n=bd−1

1
n

>

∫ bd

bd−1

dx

x

= log(bd)− log(bd−1) = log b,

wherelog denotes the natural logarithm. Thus (1) yields

∞∑
n=1

1
f(n)

> (log b)
∞∑

n=1

1
f(n)

,

a contradiction sincelog b > 1 for b ≥ 3. Therefore the
sum diverges.

For b = 2, we have a slightly different identity because
f(2) 6= 2f(2). Instead, for any positive integeri, we
have

2i−1∑
n=1

1
f(n)

= 1 +
1
2

+
1
6

+
i∑

d=3

1
f(d)

2d−1∑
n=2d−1

1
n

. (2)

Again comparing an integral to a Riemann sum, we see
that ford ≥ 3,

2d−1∑
n=2d−1

1
n

<
1

2d−1
− 1

2d
+

∫ 2d

2d−1

dx

x

=
1
2d

+ log 2

≤ 1
8

+ log 2 < 0.125 + 0.7 < 1.

Putc = 1
8 +log 2 andL = 1+ 1

2 + 1
6(1−c) . Then we can

prove that
∑2i−1

n=1
1

f(n) < L for all i ≥ 2 by induction
on i. The casei = 2 is clear. For the induction, note
that by (2),

2i−1∑
n=1

1
f(n)

< 1 +
1
2

+
1
6

+ c
i∑

d=3

1
f(d)

< 1 +
1
2

+
1
6

+ c
1

6(1− c)

= 1 +
1
2

+
1

6(1− c)
= L,

as desired. We conclude that
∑∞

n=1
1

f(n) converges to a
limit less than or equal toL.

Note: the above argument proves that the sum forb = 2
is at mostL < 2.417. One can also obtain a lower
bound by the same technique, namely1 + 1

2 + 1
6(1−c′)

with c′ = log 2. This bound exceeds2.043. (By con-
trast, summing the first 100000 terms of the series only
yields a lower bound of1.906.) Repeating the same ar-
guments withd ≥ 4 as the cutoff yields the upper bound
2.185 and the lower bound2.079.

B1 The probability is1/99. In fact, we show by induc-
tion on n that aftern shots, the probability of having
made any number of shots from1 to n − 1 is equal to
1/(n − 1). This is evident forn = 2. Given the result
for n, we see that the probability of makingi shots after
n + 1 attempts is

i− 1
n

1
n− 1

+
(

1− i

n

)
1

n− 1
=

(i− 1) + (n− i)
n(n− 1)

=
1
n

,

as claimed.
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B2 (Note: the problem statement assumes that all polyhe-
dra are connected and that no two edges share more than
one face, so we will do likewise. In particular, these are
true for all convex polyhedra.) We show that in fact
the first player can win on the third move. Suppose the
polyhedron has a faceA with at least four edges. If the
first player plays there first, after the second player’s
first move there will be three consecutive facesB,C,D
adjacent toA which are all unoccupied. The first player
wins by playing inC; after the second player’s second
move, at least one ofB andD remains unoccupied, and
either is a winning move for the first player.

It remains to show that the polyhedron has a face with at
least four edges. (Thanks to Russ Mann for suggesting
the following argument.) Suppose on the contrary that
each face has only three edges. Starting with any face
F1 with verticesv1, v2, v3, let v4 be the other endpoint
of the third edge out ofv1. Then the faces adjacent toF1

must have verticesv1, v2, v4; v1, v3, v4; andv2, v3, v4.
Thus v1, v2, v3, v4 form a polyhedron by themselves,
contradicting the fact that the given polyhedron is con-
nected and has at least five vertices. (One can also de-
duce this using Euler’s formulaV − E + F = 2 − 2g,
whereV,E, F are the numbers of vertices, edges and
faces, respectively, andg is the genus of the polyhe-
dron. For a convex polyhedron,g = 0 and you get the
“usual” Euler’s formula.)

Note: Walter Stromquist points out the following coun-
terexample if one relaxes the assumption that a pair of
faces may not share multiple edges. Take a tetrahedron
and remove a smaller tetrahedron from the center of an
edge; this creates two small triangular faces and turns
two of the original faces into hexagons. Then the sec-
ond player can draw by signing one of the hexagons,
one of the large triangles, and one of the small trian-
gles. (He does this by “mirroring”: wherever the first
player signs, the second player signs the other face of
the same type.)

B3 The desired inequalities can be rewritten as

1− 1
n

< exp
(

1 + n log
(

1− 1
n

))
< 1− 1

2n
.

By taking logarithms, we can rewrite the desired in-
equalities as

− log
(

1− 1
2n

)
< −1− n log

(
1− 1

n

)
< − log

(
1− 1

n

)
.

Rewriting these in terms of the Taylor expansion of
− log(1−x), we see that the desired result is also equiv-
alent to

∞∑
i=1

1
i2ini

<
∞∑

i=1

1
(i + 1)ni

<
∞∑

i=1

1
ini

,

which is evident because the inequalities hold term by
term.

Note: David Savitt points out that the upper bound can
be improved from1/(ne) to 2/(3ne) with a slightly
more complicated argument. (In fact, for anyc > 1/2,
one has an upper bound ofc/(ne), but only forn above
a certain bound depending onc.)

B4 Use the following strategy: guess1, 3, 4, 6, 7, 9, . . . un-
til the target numbern is revealed to be equal to or lower
than one of these guesses. Ifn ≡ 1 (mod 3), it will be
guessed on an odd turn. Ifn ≡ 0 (mod 3), it will be
guessed on an even turn. Ifn ≡ 2 (mod 3), thenn + 1
will be guessed on an even turn, forcing a guess ofn on
the next turn. Thus the probability of success with this
strategy is1335/2002 > 2/3.

Note: for any positive integerm, this strategy wins
when the number is being guessed from[1,m] with
probability 1

mb 2m+1
3 c. We can prove that this is best

possible as follows. Letam denotem times the proba-
bility of winning when playing optimally. Also, letbm

denotem times the corresponding probability of win-
ning if the objective is to select the number in an even
number of guesses instead. (For definiteness, extend the
definitions to incorporatea0 = 0 andb0 = 0.)

We first claim thatam = 1+max1≤k≤m{bk−1+bm−k}
andbm = max1≤k≤m{ak−1 + am−k} for m ≥ 1. To
establish the first recursive identity, suppose that our
first guess is some integerk. We automatically win if
n = k, with probability1/m. If n < k, with proba-
bility (k − 1)/m, then we wish to guess an integer in
[1, k − 1] in an even number of guesses; the probabil-
ity of success when playing optimally isbk−1/(k − 1),
by assumption. Similarly, ifn < k, with probability
(m−k)/m, then the subsequent probability of winning
is bm−k/(m − k). In sum, the overall probability of
winning if k is our first guess is(1 + bk−1 + bm−k)/m.
For optimal strategy, we choosek such that this quan-
tity is maximized. (Note that this argument still holds
if k = 1 or k = m, by our definitions ofa0 andb0.)
The first recursion follows, and the second recursion is
established similarly.

We now prove by induction thatam = b(2m + 1)/3c
andbm = b2m/3c for m ≥ 0. The inductive step relies
on the inequalitybxc + byc ≤ bx + yc, with equal-
ity when one ofx, y is an integer. Now suppose that
ai = b(2i + 1)/3c andbi = b2i/3c for i < m. Then

1 + bk−1 + bm−k = 1 +
⌊

2(k − 1)
3

⌋
+

⌊
2(m− k)

3

⌋
≤

⌊
2m

3

⌋
and similarlyak−1 + am−k ≤ b(2m + 1)/3c, with
equality in both cases attained, e.g., whenk = 1. The
inductive formula foram andbm follows.
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B5 (due to Dan Bernstein) PutN = 2002!. Then for
d = 1, . . . , 2002, the numberN2 written in baseb =
N/d − 1 has digitsd2, 2d2, d2. (Note that these really
are digits because2(2002)2 < (2002!)2/2002− 1.)

Note: one can also produce an integerN which has base
b digits 1, ∗, 1 for n different values ofb, as follows.
Choosec with 0 < c < 21/n. For m a large positive
integer, putN = 1+(m+1) · · · (m+n)bcmcn−2. For
m sufficiently large, the bases

b =
N − 1

(m + i)mn−2
=

∏
j 6=i

(m + j)

for i = 1, . . . , n will have the properties thatN ≡ 1
(mod b) andb2 < N < 2b2 for m sufficiently large.

Note (due to Russ Mann): one can also give a “noncon-
structive” argument. LetN be a large positive integer.
For b ∈ (N2, N3), the number of 3-digit base-b palin-
dromes in the range[b2, N6 − 1] is at least⌊

N6 − b2

b

⌋
− 1 ≥ N6

b2
− b− 2,

since there is a palindrome in each interval[kb, (k +
1)b − 1] for k = b, . . . , b2 − 1. Thus the average num-
ber of bases for which a number in[1, N6 − 1] is at
least

1
N6

N3−1∑
b=N2+1

(
N6

b
− b− 2

)
≥ log(N)− c

for some constantc > 0. TakeN so that the right side
exceeds2002; then at least one number in[1, N6 − 1]
is a base-b palindrome for at least 2002 values ofb.

B6 We prove that the determinant is congruent modulop to

x

p−1∏
i=0

(y + ix)
p−1∏

i,j=0

(z + ix + jy). (3)

We first check that

p−1∏
i=0

(y + ix) ≡ yp − xp−1y (mod p). (4)

Since both sides are homogeneous as polynomials inx
andy, it suffices to check (4) forx = 1, as a congru-
ence between polynomials. Now note that the right side
has0, 1, . . . , p − 1 as roots modulop, as does the left

side. Moreover, both sides have the same leading coef-
ficient. Since they both have degree onlyp, they must
then coincide.

We thus have

x

p−1∏
i=0

(y + ix)
p−1∏

i,j=0

(z + ix + jy)

≡ x(yp − xp−1y)
p−1∏
j=0

((z + jy)p − xp−1(z + jy))

≡ (xyp − xpy)
p−1∏
j=0

(zp − xp−1z + jyp − jxp−1y)

≡ (xyp − xpy)((zp − xp−1z)p

− (yp − xp−1y)p−1(zp − xp−1z))

≡ (xyp − xpy)(zp2
− xp2−pzp)

− x(yp − xp−1y)p(zp − xp−1z)

≡ xypzp2
− xpyzp2

− xp2−p+1ypzp + xp2
yzp

− xyp2
zp + xp2−p+1ypzp + xpyp2

z − xp2
ypz

≡ xypzp2
+ yzpxp2

+ zxpyp2

− xzpyp2
− yxpzp2

− zypxp2
,

which is precisely the desired determinant.

Note: a simpler conceptual proof is as follows. (Ev-
erything in this paragraph will be modulop.) Note
that for any integersa, b, c, the column vector[ax +
by + cz, (ax + by + cz)p, (ax + by + cz)p2

] is a linear
combination of the columns of the given matrix. Thus
ax+by+cz divides the determinant. In particular, all of
the factors of (3) divide the determinant; since both (3)
and the determinant have degreep2 + p + 1, they agree
up to a scalar multiple. Moreover, they have the same
coefficient ofzp2

ypx (since this term only appears in
the expansion of (3) when you choose the first term in
each factor). Thus the determinant is congruent to (3),
as desired.

Either argument can be used to generalize to a corre-
spondingn × n determinant, called a Moore determi-
nant; we leave the precise formulation to the reader.
Note the similarity with the classical Vandermonde de-
terminant: ifA is then × n matrix with Aij = xj

i for
i, j = 0, . . . , n− 1, then

det(A) =
∏

1≤i<j≤n

(xj − xi).
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