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A1 There aren such sums. More precisely, there is exactly
one such sum withk terms for each ofk = 1, . . . , n
(and clearly no others). To see this, note that ifn =
a1 + a2 + · · ·+ ak with a1 ≤ a2 ≤ · · · ≤ ak ≤ a1 + 1,
then

ka1 = a1 + a1 + · · ·+ a1

≤ n ≤ a1 + (a1 + 1) + · · ·+ (a1 + 1)
= ka1 + k − 1.

However, there is a unique integera1 satisfying these
inequalities, namelya1 = bn/kc. Moreover, oncea1

is fixed, there arek different possibilities for the sum
a1 + a2 + · · · + ak: if i is the last integer such that
ai = a1, then the sum equalska1 + (i − 1). The pos-
sible values ofi are1, . . . , k, and exactly one of these
sums comes out equal ton, proving our claim.

Note: In summary, there is a unique partition ofn with
k terms that is “as equally spaced as possible”. One
can also obtain essentially the same construction induc-
tively: except for the all-ones sum, each partition ofn
is obtained by “augmenting” a unique partition ofn−1.

A2 First solution: Assume without loss of generality that
ai + bi > 0 for eachi (otherwise both sides of the de-
sired inequality are zero). Then the AM-GM inequality
gives (

a1 · · · an

(a1 + b1) · · · (an + bn)

)1/n

≤ 1
n

(
a1

a1 + b1
+ · · ·+ an

an + bn

)
,

and likewise with the roles ofa andb reversed. Adding
these two inequalities and clearing denominators yields
the desired result.

Second solution: Write the desired inequality in the
form

(a1+b1) · · · (an+bn) ≥ [(a1 · · · an)1/n+(b1 · · · bn)1/n]n,

expand both sides, and compare the terms on both
sides in which k of the terms are among the
ai. On the left, one has the product of eachk-
element subset of{1, . . . , n}; on the right, one has(
n
k

)
(a1 · · · an)k/n · · · (b1 . . . bn)(n−k)/n, which is pre-

cisely
(
n
k

)
times the geometric mean of the terms on

the left. Thus AM-GM shows that the terms under con-
sideration on the left exceed those on the right; adding
these inequalities over allk yields the desired result.

Third solution: Since both sides are continuous in each
ai, it is sufficient to prove the claim witha1, . . . , an all
positive (the general case follows by taking limits as
some of theai tend to zero). Putri = bi/ai; then the
given inequality is equivalent to

(1 + r1)1/n · · · (1 + rn)1/n ≥ 1 + (r1 · · · rn)1/n.

In terms of the function

f(x) = log(1 + ex)

and the quantitiessi = log ri, we can rewrite the de-
sired inequality as

1
n

(f(s1) + · · ·+ f(sn)) ≥ f

(
s1 + · · ·+ sn

n

)
.

This will follow from Jensen’s inequality if we can ver-
ify that f is a convex function; it is enough to check that
f ′′(x) > 0 for all x. In fact,

f ′(x) =
ex

1 + ex
= 1− 1

1 + ex

is an increasing function ofx, so f ′′(x) > 0 and
Jensen’s inequality thus yields the desired result. (As
long as theai are all positive, equality holds when
s1 = · · · = sn, i.e., when the vectors(a1, . . . , an) and
(b1, . . . , bn). Of course other equality cases crop up if
some of theai vanish, i.e., ifa1 = b1 = 0.)

Fourth solution: We apply induction onn, the case
n = 1 being evident. First we verify the auxiliary in-
equality

(an + bn)(cn + dn)n−1 ≥ (acn−1 + bdn−1)n

for a, b, c, d ≥ 0. The left side can be written as

ancn(n−1) + bndn(n−1)

+
n−1∑
i=1

(
n− 1

i

)
ancnidn(n−1−i)

+
n−1∑
i=1

(
n− 1
i− 1

)
bncn(n−i)dn(i−1).



Applying the weighted AM-GM inequality between
matching terms in the two sums yields

(an + bn)(cn + dn)n−1

≥ ancn(n−1) + bndn(n−1)

+
n−1∑
i=1

(
n

i

)
aibn−ic(n−1)id(n−1)(n−i),

proving the auxiliary inequality.

Now given the auxiliary inequality and then−1 case of
the desired inequality, we apply the auxiliary inequality
with a = a

1/n
1 , b = b

1/n
1 , c = (a2 · · · an)1/n(n−1),

d = (b2 . . . bn)1/n(n−1). The right side will be then-th
power of the desired inequality. The left side comes out
to

(a1 + b1)((a2 · · · an)1/(n−1) + (b2 · · · bn)1/(n−1))n−1,

and by the induction hypothesis, the second factor is
less than(a2 + b2) · · · (an + bn). This yields the de-
sired result.

Note: Equality holds if and only ifai = bi = 0 for
somei or if the vectors(a1, . . . , an) and (b1, . . . , bn)
are proportional. As pointed out by Naoki Sato, the
problem also appeared on the 1992 Irish Mathematical
Olympiad. It is also a special case of a classical in-
equality, known as Ḧolder’s inequality, which general-
izes the Cauchy-Schwarz inequality (this is visible from
then = 2 case); the first solution above is adapted from
the standard proof of Ḧolder’s inequality. We don’t
know whether the declaration “Apply Ḧolder’s inequal-
ity” by itself is considered an acceptable solution to this
problem.

A3 First solution: Write

f(x) = sin x + cos x + tanx + cot x + sec x + csc x

= sinx + cos x +
1

sinx cos x
+

sinx + cos x

sinx cos x
.

We can writesinx + cos x =
√

2 cos(π/4 − x); this
suggests making the substitutiony = π/4 − x. In this
new coordinate,

sinx cos x =
1
2

sin 2x =
1
2

cos 2y,

and writingc =
√

2 cos y, we have

f(y) = (1 + c)
(

1 +
2

c2 − 1

)
− 1

= c +
2

c− 1
.

We must analyze this function ofc in the range
[−
√

2,
√

2]. Its value atc = −
√

2 is 2−3
√

2 < −2.24,
and atc =

√
2 is 2 + 3

√
2 > 6.24. Its derivative is

1− 2/(c− 1)2, which vanishes when(c− 1)2 = 2, i.e.,
wherec = 1 ±

√
2. Only the valuec = 1 −

√
2 is in

bounds, at which the value off is 1 − 2
√

2 > −1.83.
As for the pole atc = 1, we observe thatf decreases
as c approaches from below (so takes negative values
for all c < 1) and increases asc approaches from above
(so takes positive values for allc > 1); from the data
collected so far, we see thatf has no sign crossings, so
the minimum of|f | is achieved at a critical point off .
We conclude that the minimum of|f | is 2

√
2− 1.

Alternate derivation (due to Zuming Feng): We can also
minimize|c + 2/(c− 1)| without calculus (or worrying
about boundary conditions). Forc > 1, we have

1 + (c− 1) +
2

c− 1
≥ 1 + 2

√
2

by AM-GM on the last two terms, with equality for
c − 1 =

√
2 (which is out of range). Forc < 1, we

similarly have

−1 + 1− c +
2

1− c
≥ −1 + 2

√
2,

here with equality for1− c =
√

2.

Second solution:Write

f(a, b) = a + b +
1
ab

+
a + b

ab
.

Then the problem is to minimize|f(a, b)| subject to the
constrainta2 + b2 − 1 = 0. Since the constraint re-
gion has no boundary, it is enough to check the value
at each critical point and each potential discontinuity
(i.e., whereab = 0) and select the smallest value (after
checking thatf has no sign crossings).

We locate the critical points using the Lagrange mul-
tiplier condition: the gradient off should be parallel
to that of the constraint, which is to say, to the vector
(a, b). Since

∂f

∂a
= 1− 1

a2b
− 1

a2

and similarly forb, the proportionality yields

a2b3 − a3b2 + a3 − b3 + a2 − b2 = 0.

The irreducible factors of the left side are1 + a, 1 + b,
a− b, andab− a− b. So we must check what happens
when any of those factors, ora or b, vanishes.

If 1 + a = 0, thenb = 0, and the singularity off be-
comes removable when restricted to the circle. Namely,
we have

f = a + b +
1
a

+
b + 1
ab

anda2+b2−1 = 0 implies(1+b)/a = a/(1−b). Thus
we havef = −2; the same occurs when1 + b = 0.
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If a − b = 0, then a = b = ±
√

2/2 and either
f = 2 + 3

√
2 > 6.24, or f = 2− 3

√
2 < −2.24.

If a = 0, then eitherb = −1 as discussed above, or
b = 1. In the latter case,f blows up as one approaches
this point, so there cannot be a global minimum there.

Finally, if ab− a− b = 0, then

a2b2 = (a + b)2 = 2ab + 1

and soab = 1±
√

2. The plus sign is impossible since
|ab| ≤ 1, soab = 1−

√
2 and

f(a, b) = ab +
1
ab

+ 1

= 1− 2
√

2 > −1.83.

This yields the smallest value of|f | in the list (and in-
deed no sign crossings are possible), so2

√
2− 1 is the

desired minimum of|f |.
Note: Instead of using the geometry of the graph off
to rule out sign crossings, one can verify explicitly that
f cannot take the value 0. In the first solution, note that
c + 2/(c − 1) = 0 impliesc2 − c + 2 = 0, which has
no real roots. In the second solution, we would have

a2b + ab2 + a + b = −1.

Squaring both sides and simplifying yields

2a3b3 + 5a2b2 + 4ab = 0,

whose only real root isab = 0. But the cases with
ab = 0 do not yieldf = 0, as verified above.

A4 We split into three cases. Note first that|A| ≥ |a|, by
applying the condition for largex.

Case 1:B2 − 4AC > 0. In this caseAx2 + Bx + C
has two distinct real rootsr1 andr2. The condition im-
plies thatax2 + bx + c also vanishes atr1 andr2, so
b2 − 4ac > 0. Now

B2 − 4AC = A2(r1 − r2)2

≥ a2(r1 − r2)2

= b2 − 4ac.

Case 2: B2 − 4AC ≤ 0 and b2 − 4ac ≤ 0. As-
sume without loss of generality thatA ≥ a > 0, and
that B = 0 (by shifting x). ThenAx2 + Bx + C ≥
ax2 + bx + c ≥ 0 for all x; in particular,C ≥ c ≥ 0.
Thus

4AC −B2 = 4AC

≥ 4ac

≥ 4ac− b2.

Alternate derivation (due to Robin Chapman): the el-
lipse Ax2 + Bxy + Cy2 = 1 is contained within the

ellipseax2 + bxy + cy2 = 1, and their respective en-
closed areas areπ/(4AC −B2) andπ/(4ac− b2).

Case 3: B2 − 4AC ≤ 0 and b2 − 4ac > 0. Since
Ax2 + Bx + C has a graph not crossing thex-axis, so
do (Ax2 + Bx + C)± (ax2 + bx + c). Thus

(B − b)2 − 4(A− a)(C − c) ≤ 0,

(B + b)2 − 4(A + a)(C + c) ≤ 0

and adding these together yields

2(B2 − 4AC) + 2(b2 − 4ac) ≤ 0.

Henceb2 − 4ac ≤ 4AC −B2, as desired.

A5 First solution: We represent a Dyckn-path by a se-
quencea1 · · · a2n, where eachai is either (1, 1) or
(1,−1).

Given an (n − 1)-path P = a1 · · · a2n−2, we
distinguish two cases. IfP has no returns
of even-length, then letf(P ) denote then-path
(1, 1)(1,−1)P . Otherwise, letaiai+1 · · · aj denote the
rightmost even-length return inP , and let f(P ) =
(1, 1)a1a2 · · · aj(1,−1)aj+1 · · · a2n−2. Thenf clearly
maps the set of Dyck(n − 1)-paths to the set of Dyck
n-paths having no even return.

We claim thatf is bijective; to see this, we simply
construct the inverse mapping. Given ann-pathP , let
R = aiai+1...aj denote the leftmost return inP , and
let g(P ) denote the path obtained by removinga1 and
aj from P . Then evidentlyf ◦ g andg ◦ f are identity
maps, proving the claim.

Second solution: (by Dan Bernstein) LetCn be the
number of Dyck paths of lengthn, let On be the num-
ber of Dyck paths whose final return has odd length,
and letXn be the number of Dyck paths with no return
of even length.

We first exhibit a recursion forOn; note thatO0 = 0.
Given a Dyckn-path whose final return has odd length,
split it just after its next-to-last return. For somek (pos-
sibly zero), this yields a Dyckk-path, an upstep, a Dyck
(n−k− 1)-path whose odd return has even length, and
a downstep. Thus forn ≥ 1,

On =
n−1∑
k=0

Ck(Cn−k−1 −On−k−1).

We next exhibit a similar recursion forXn; note that
X0 = 1. Given a Dyckn-path with no even return,
splitting as above yields for somek a Dyckk-path with
no even return, an upstep, a Dyck(n−k−1)-path whose
final return has even length, then a downstep. Thus for
n ≥ 1,

Xn =
n−1∑
k=0

Xk(Cn−k−1 −On−k−1).
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To conclude, we verify thatXn = Cn−1 for n ≥ 1,
by induction onn. This is clear forn = 1 since
X1 = C0 = 1. Given Xk = Ck−1 for k < n, we
have

Xn =
n−1∑
k=0

Xk(Cn−k−1 −On−k−1)

= Cn−1 −On−1 +
n−1∑
k=1

Ck−1(Cn−k−1 −On−k−1)

= Cn−1 −On−1 + On−1

= Cn−1,

as desired.

Note: Since the problem only asked about theexistence
of a one-to-one correspondence, we believe that any
proof, bijective or not, that the two sets have the same
cardinality is an acceptable solution. (Indeed, it would
be highly unusual to insist on using or not using a spe-
cific proof technique!) The second solution above can
also be phrased in terms of generating functions. Also,
the Cn are well-known to equal the Catalan numbers

1
n+1

(
2n
n

)
; the problem at hand is part of a famous exer-

cise in Richard Stanley’sEnumerative Combinatorics,
Volume 1giving 66 combinatorial interpretations of the
Catalan numbers.

A6 First solution: Yes, such a partition is possible. To
achieve it, place each integer intoA if it has an even
number of 1s in its binary representation, and intoB
if it has an odd number. (One discovers this by simply
attempting to place the first few numbers by hand and
noticing the resulting pattern.)

To show thatrA(n) = rB(n), we exhibit a bijection be-
tween the pairs(a1, a2) of distinct elements ofA with
a1 + a2 = n and the pairs(b1, b2) of distinct elements
of B with b1 + b2 = n. Namely, given a pair(a1, a2)
with a1 + a2 = n, write both numbers in binary and
find the lowest-order place in which they differ (such a
place exists becausea1 6= a2). Change both numbers
in that place and call the resulting numbersb1, b2. Then
a1 + a2 = b1 + b2 = n, but the parity of the number of
1s inb1 is opposite that ofa1, and likewise betweenb2

anda2. This yields the desired bijection.

Second solution: (by Micah Smukler) Writeb(n) for
the number of 1s in the base 2 expansion ofn, and
f(n) = (−1)b(n). Then the desired partition can be
described asA = f−1(1) andB = f−1(−1). Since
f(2n) + f(2n + 1) = 0, we have

n∑
i=0

f(n) =

{
0 n odd
f(n) n even.

If p, q are both inA, thenf(p) + f(q) = 2; if p, q are
both inB, thenf(p)+f(q) = −2; if p, q are in different

sets, thenf(p) + f(q) = 0. In other words,

2(rA(n)− rB(n)) =
∑

p+q=n,p<q

(f(p) + f(q))

and it suffices to show that the sum on the right is always
zero. Ifn is odd, that sum is visibly

∑n
i=0 f(i) = 0. If

n is even, the sum equals(
n∑

i=0

f(i)

)
− f(n/2) = f(n)− f(n/2) = 0.

This yields the desired result.

Third solution: (by Dan Bernstein) Putf(x) =∑
n∈A xn and g(x) =

∑
n∈B xn; then the value of

rA(n) (resp.rB(n)) is the coefficient ofxn in f(x)2 −
f(x2) (resp.g(x)2−g(x2)). From the evident identities

1
1− x

= f(x) + g(x)

f(x) = f(x2) + xg(x2)

g(x) = g(x2) + xf(x2),

we have

f(x)− g(x) = f(x2)− g(x2) + xg(x2)− xf(x2)

= (1− x)(f(x2)− g(x2))

=
f(x2)− g(x2)
f(x) + g(x)

.

We deduce thatf(x)2− g(x)2 = f(x2)− g(x2), yield-
ing the desired equality.

Note: This partition is actually unique, up to inter-
changingA andB. More precisely, the condition that
0 ∈ A andrA(n) = rB(n) for n = 1, . . . ,m uniquely
determines the positions of0, . . . ,m. We see this by
induction onm: given the result form − 1, switching
the location ofm changesrA(m) by one and does not
changerB(m), so it is not possible for both positions to
work. Robin Chapman points out this problem is solved
in D.J. Newman’sAnalytic Number Theory(Springer,
1998); in that solution, one uses generating functions to
find the partition and establish its uniqueness, not just
verify it.

B1 No, there do not.

First solution: Suppose the contrary. By settingy =
−1, 0, 1 in succession, we see that the polynomials
1 − x + x2, 1, 1 + x + x2 are linear combinations of
a(x) andb(x). But these three polynomials are linearly
independent, so cannot all be written as linear combina-
tions of two other polynomials, contradiction.

Alternate formulation: the given equation expresses a
diagonal matrix with1, 1, 1 and zeroes on the diagonal,
which has rank 3, as the sum of two matrices of rank 1.
But the rank of a sum of matrices is at most the sum of
the ranks of the individual matrices.
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Second solution: It is equivalent (by relabeling and
rescaling) to show that1+xy +x2y2 cannot be written
asa(x)d(y)− b(x)c(y). Write a(x) =

∑
aix

i, b(x) =∑
bix

i, c(y) =
∑

cjy
j , d(y) =

∑
djy

j . We now start
comparing coefficients of1+xy+x2y2. By comparing
coefficients of1+xy +x2y2 anda(x)d(y)− b(x)c(y),
we get

1 = aidi − bici (i = 0, 1, 2)
0 = aidj − bicj (i 6= j).

The first equation says thatai andbi cannot both vanish,
andci anddi cannot both vanish. The second equation
says thatai/bi = cj/dj wheni 6= j, where both sides
should be viewed inR ∪ {∞} (and neither is undeter-
mined if i, j ∈ {0, 1, 2}). But then

a0/b0 = c1/d1 = a2/b2 = c0/d0

contradicting the equationa0d0 − b0c0 = 1.

Third solution: We work over the complex numbers,
in which we have a primitive cube rootω of 1. We also
use without further comment unique factorization for
polynomials in two variables over a field. And we keep
the relabeling of the second solution.

Suppose the contrary. Since1 + xy + x2y2 = (1 −
xy/ω)(1−xy/ω2), the rational functiona(ω/y)d(y)−
b(ω/y)c(y) must vanish identically (that is, coefficient
by coefficient). If one of the polynomials, saya, van-
ished identically, then one ofb or c would also, and the
desired inequality could not hold. So none of them van-
ish identically, and we can write

c(y)
d(y)

=
a(ω/y)
b(ω/y)

.

Likewise,

c(y)
d(y)

=
a(ω2/y)
b(ω2/y)

.

Put f(x) = a(x)/b(x); then we havef(ωx) = f(x)
identically. That is,a(x)b(ωx) = b(x)a(ωx). Sincea
andb have no common factor (otherwise1+xy +x2y2

would have a factor divisible only byx, which it doesn’t
since it doesn’t vanish identically for any particularx),
a(x) dividesa(ωx). Since they have the same degree,
they are equal up to scalars. It follows that one of
a(x), xa(x), x2a(x) is a polynomial inx3 alone, and
likewise forb (with the same power ofx).

If xa(x) andxb(x), or x2a(x) andx2b(x), are poly-
nomials inx3, thena andb are divisible byx, but we
know a andb have no common factor. Hencea(x) and
b(x) are polynomials inx3. Likewise, c(y) andd(y)
are polynomials iny3. But then1 + xy + x2y2 =
a(x)d(y)− b(x)c(y) is a polynomial inx3 andy3, con-
tradiction.

Note: The third solution only works over fields of char-
acteristic not equal to 3, whereas the other two work
over arbitrary fields. (In the first solution, one must re-
place−1 by another value if working in characteristic
2.)

B2 It is easy to see by induction that thej-th entry of
thek-th sequence (where the original sequence isk =
1) is

∑k
i=1

(
k−1
i−1

)
/(2k−1(i + j − 1)), and soxn =

1
2n−1

∑n
i=1

(
n−1
i−1

)
/i. Now

(
n−1
i−1

)
/i =

(
n
i

)
/n; hence

xn =
1

n2n−1

n∑
i=1

(
n

i

)
=

2n − 1
n2n−1

< 2/n,

as desired.

B3 First solution: It is enough to show that for each prime
p, the exponent ofp in the prime factorization of both
sides is the same. On the left side, it is well-known that
the exponent ofp in the prime factorization ofn! is

n∑
i=1

⌊
n

pi

⌋
.

(To see this, note that thei-th term counts the multiples
of pi among1, . . . , n, so that a number divisible exactly
by pi gets counted exactlyi times.) This number can be
reinterpreted as the cardinality of the setS of points in
the plane with positive integer coordinates lying on or
under the curvey = np−x: namely, each summand is
the number of points ofS with x = i.

On the right side, the exponent ofp in the prime
factorization of lcm(1, . . . , bn/ic) is blogpbn/icc =
blogp(n/i)c. However, this is precisely the number of
points ofS with y = i. Thus

n∑
i=1

blogpbn/icc =
n∑

i=1

⌊
n

pi

⌋
,

and the desired result follows.

Second solution:We prove the result by induction on
n, the casen = 1 being obvious. What we actually
show is that going fromn − 1 to n changes both sides
by the same multiplicative factor, that is,

n =
n−1∏
i=1

lcm{1, 2, . . . , bn/ic}
lcm{1, 2, . . . , b(n− 1)/ic}

.

Note that thei-th term in the product is equal to 1 ifn/i
is not an integer, i.e., ifn/i is not a divisor ofn. It is
also equal to 1 ifn/i is a divisor ofn but not a prime
power, since any composite number divides the lcm of
all smaller numbers. However, ifn/i is a power ofp,
then thei-th term is equal top.

Sincen/i runs over all proper divisors ofn, the product
on the right side includes one factor of the primep for
each factor ofp in the prime factorization ofn. Thus
the whole product is indeed equal ton, completing the
induction.

5



B4 First solution: Putg = r1 +r2, h = r3 +r4, u = r1r2,
v = r3r4. We are given thatg is rational. The following
are also rational:

−b

a
= g + h

c

a
= gh + u + v

−d

a
= gv + hu

From the first line,h is rational. From the second line,
u + v is rational. From the third line,g(u + v)− (gv +
hu) = (g − h)u is rational. Sinceg 6= h, u is rational,
as desired.

Second solution:This solution uses some basic Galois
theory. We may assumer1 6= r2, since otherwise they
are both rational and so then isr1r2.

Let τ be an automorphism of the field of algebraic num-
bers; thenτ maps eachri to another one, and fixes
the rational numberr1 + r2. If τ(r1) equals one of
r1 or r2, thenτ(r2) must equal the other one, and vice
versa. Thusτ either fixes the set{r1, r2} or moves it
to {r3, r4}. But if the latter happened, we would have
r1 + r2 = r3 + r4, contrary to hypothesis. Thusτ fixes
the set{r1, r2} and in particular the numberr1r2. Since
this is true for anyτ , r1r2 must be rational.

Note: The conclusion fails if we allowr1+r2 = r3+r4.
For instance, take the polynomialx4 − 2 and label
its roots so that(x − r1)(x − r2) = x2 −

√
2 and

(x− r3)(x− r4) = x2 +
√

2.

B5 Place the unit circle on the complex plane so that
A,B,C correspond to the complex numbers1, ω, ω2,
whereω = e2πi/3, and letP correspond to the complex
numberx. The distancesa, b, c are then|x − 1|, |x −
ω|, |x− ω2|. Now the identity

(x− 1) + ω(x− ω) + ω2(x− ω2) = 0

implies that there is a triangle whose sides, as vec-
tors, correspond to the complex numbersx − 1, ω(x −
ω), ω2(x− ω2); this triangle has sides of lengtha, b, c.

To calculate the area of this triangle, we first note a more
general formula. If a triangle in the plane has vertices
at 0, v1 = s1 + it1, v2 = s2 + it2, then it is well
known that the area of the triangle is|s1t2 − s2t1|/2 =
|v1v2 − v2v1|/4. In our case, we havev1 = x − 1 and
v2 = ω(x− ω); then

v1v2 − v2v1 = (ω2 − ω)(xx− 1) = i
√

3(|x|2 − 1).

Hence the area of the triangle is
√

3(1− |x|2)/4, which
depends only on the distance|x| from P to O.

B6 First solution: (composite of solutions by Feng Xie
and David Pritchard) Letµ denote Lebesgue measure

on [0, 1]. Define

E+ = {x ∈ [0, 1] : f(x) ≥ 0}
E− = {x ∈ [0, 1] : f(x) < 0};

thenE+, E− are measurable andµ(E+)+µ(E−) = 1.
Write µ+ andµ− for µ(E+) andµ(E−). Also define

I+ =
∫

E+

|f(x)| dx

I− =
∫

E−

|f(x)| dx,

so that
∫ 1

0
|f(x)| dx = I+ + I−.

From the triangle inequality|a + b| ≥ ±(|a| − |b|), we
have the inequality∫∫

E+×E−

|f(x) + f(y)| dx dy

≥ ±
∫∫

E+×E−

(|f(x)| − |f(y)|) dx dy

= ±(µ−I+ − µ+I−),

and likewise with+ and− switched. Adding these in-
equalities together and allowing all possible choices of
the signs, we get∫∫

(E+×E−)∪(E−×E+)

|f(x) + f(y)| dx dy

≥ max {0, 2(µ−I+ − µ+I−), 2(µ+I− − µ−I+)} .

To this inequality, we add the equalities∫∫
E+×E+

|f(x) + f(y)| dx dy = 2µ+I+∫∫
E−×E−

|f(x) + f(y)| dx dy = 2µ−I−

−
∫ 1

0

|f(x)| dx = −(µ+ + µ−)(I+ + I−)

to obtain∫ 1

0

∫ 1

0

|f(x) + f(y)| dx dy −
∫ 1

0

|f(x)| dx

≥ max{(µ+ − µ−)(I+ + I−) + 2µ−(I− − I+),
(µ+ − µ−)(I+ − I−),
(µ− − µ+)(I+ + I−) + 2µ+(I+ − I−)}.

Now simply note that for each of the possible compar-
isons betweenµ+ andµ−, and betweenI+ andI−, one
of the three terms above is manifestly nonnegative. This
yields the desired result.

Second solution: We will show at the end that it is
enough to prove a discrete analogue: ifx1, . . . , xn are
real numbers, then

1
n2

n∑
i,j=1

|xi + xj | ≥
1
n

n∑
i=1

|xi|.

6



In the meantime, we concentrate on this assertion.

Let f(x1, . . . , xn) denote the difference between the
two sides. We induct on the number of nonzero values
of |xi|. We leave for later the base case, where there is
at most one such value. Suppose instead for now that
there are two or more. Lets be the smallest, and sup-
pose without loss of generality thatx1 = · · · = xa = s,
xa+1 = · · · = xa+b = −s, and fori > a + b, either
xi = 0 or |xi| > s. (One ofa, b might be zero.)

Now consider

f(

a terms︷ ︸︸ ︷
t, · · · , t,

b terms︷ ︸︸ ︷
−t, · · · ,−t, xa+b+1, · · · , xn)

as a function oft. It is piecewise linear nears; in fact,
it is linear between 0 and the smallest nonzero value
among|xa+b+1|, . . . , |xn| (which exists by hypothesis).
Thus its minimum is achieved by one (or both) of those
two endpoints. In other words, we can reduce the num-
ber of distinct nonzero absolute values among thexi

without increasingf . This yields the induction, pend-
ing verification of the base case.

As for the base case, suppose thatx1 = · · · = xa =
s > 0, xa+1 = · · · = xa+b = −s, andxa+b+1 = · · · =
xn = 0. (Here one or even both ofa, b could be zero,
though the latter case is trivial.) Then

f(x1, . . . , xn) =
s

n2
(2a2 + 2b2 + (a + b)(n− a− b))

− s

n
(a + b)

=
s

n2
(a2 − 2ab + b2)

≥ 0.

This proves the base case of the induction, completing
the solution of the discrete analogue.

To deduce the original statement from the discrete ana-
logue, approximate both integrals by equally-spaced
Riemann sums and take limits. This works because
given a continuous function on a product of closed in-
tervals, any sequence of Riemann sums with mesh size
tending to zero converges to the integral. (The domain
is compact, so the function is uniformly continuous.
Hence for anyε > 0 there is a cutoff below which any
mesh size forces the discrepancy between the Riemann
sum and the integral to be less thanε.)

Alternate derivation (based on a solution by Dan Bern-
stein): from the discrete analogue, we have

∑
1≤i<j≤n

|f(xi) + f(xj)| ≥
n− 2

2

n∑
i=1

|f(xi)|,

for all x1, . . . , xn ∈ [0, 1]. Integrating both sides as

(x1, . . . , xn) runs over[0, 1]n yields

n(n− 1)
2

∫ 1

0

∫ 1

0

|f(x) + f(y)| dy dx

≥ n(n− 2)
2

∫ 1

0

|f(x)| dx,

or∫ 1

0

∫ 1

0

|f(x) + f(y)| dy dx ≥ n− 2
n− 1

∫ 1

0

|f(x)| dx.

Taking the limit asn → ∞ now yields the desired re-
sult.

Third solution: (by David Savitt) We give an argument
which yields the following improved result. Letµp and
µn be the measure of the sets{x : f(x) > 0} and
{x : f(x) < 0} respectively, and letµ ≤ 1/2 be
min(µp, µn). Then∫ 1

0

∫ 1

0

|f(x) + f(y)| dx dy

≥ (1 + (1− 2µ)2)
∫ 1

0

|f(x)| dx.

Note that the constant can be seen to be best possible
by considering a sequence of functions tending towards
the step function which is1 on [0, µ] and−1 on (µ, 1].
Suppose without loss of generality thatµ = µp. As in
the second solution, it suffices to prove a strengthened
discrete analogue, namely

1
n2

∑
i,j

|ai+aj | ≥

(
1 +

(
1− 2p

n

)2
)(

1
n

n∑
i=1

|ai|

)
,

wherep ≤ n/2 is the number ofa1, . . . , an which are
positive. (We need only make sure to choose meshes so
thatp/n → µ asn →∞.) An equivalent inequality is∑

1≤i<j≤n

|ai + aj | ≥
(

n− 1− 2p +
2p2

n

) n∑
i=1

|ai|.

Write ri = |ai|, and assume without loss of gener-
ality that ri ≥ ri+1 for each i. Then for i < j,
|ai + aj | = ri + rj if ai andaj have the same sign,
and isri − rj if they have opposite signs. The left-hand
side is therefore equal to

n∑
i=1

(n− i)ri +
n∑

j=1

rjCj ,

where

Cj = #{i < j : sgn(ai) = sgn(aj)}
−#{i < j : sgn(ai) 6= sgn(aj)}.

Consider the partial sumPk =
∑k

j=1 Cj . If exactlypk

of a1, . . . , ak are positive, then this sum is equal to(
pk

2

)
+
(

k − pk

2

)
−
[(

k

2

)
−
(

pk

2

)
−
(

k − pk

2

)]
,

7



which expands and simplifies to

−2pk(k − pk) +
(

k

2

)
.

For k ≤ 2p even, this partial sum would be mini-
mized with pk = k

2 , and would then equal−k
2 ; for

k < 2p odd, this partial sum would be minimized with
pk = k±1

2 , and would then equal−k−1
2 . Either way,

Pk ≥ −bk
2 c. On the other hand, ifk > 2p, then

−2pk(k − pk) +
(

k

2

)
≥ −2p(k − p) +

(
k

2

)
sincepk is at mostp. DefineQk to be−bk

2 c if k ≤ 2p

and−2p(k−p)+
(
k
2

)
if k ≥ 2p, so thatPk ≥ Qk. Note

thatQ1 = 0.

Partial summation gives

n∑
j=1

rjCj = rnPn +
n∑

j=2

(rj−1 − rj)Pj−1

≥ rnQn +
n∑

j=2

(rj−1 − rj)Qj−1

=
n∑

j=2

rj(Qj −Qj−1)

= −r2 − r4 − · · · − r2p

+
n∑

j=2p+1

(j − 1− 2p)rj .

It follows that∑
1≤i<j≤n

|ai + aj | =
n∑

i=1

(n− i)ri +
n∑

j=1

rjCj

≥
2p∑

i=1

(n− i− [i even])ri

+
n∑

i=2p+1

(n− 1− 2p)ri

= (n− 1− 2p)
n∑

i=1

ri+

2p∑
i=1

(2p + 1− i− [i even])ri

≥ (n− 1− 2p)
n∑

i=1

ri + p

2p∑
i=1

ri

≥ (n− 1− 2p)
n∑

i=1

ri + p
2p

n

n∑
i=1

ri ,

as desired. The next-to-last and last inequalities each
follow from the monotonicity of theri’s, the former by
pairing theith term with the(2p + 1− i)th.

Note: Compare the closely related Problem 6 from the
2000 USA Mathematical Olympiad: prove that for any
nonnegative real numbersa1, . . . , an, b1, . . . , bn, one
has

n∑
i,j=1

min{aiaj , bibj} ≤
n∑

i,j=1

min{aibj , ajbi}.
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