$46^{\text {th }}$ International Mathematical Olympiad Merida, Mexico

Day I

July 13, 2005

1. Six points are chosen on the sides of an equilateral triangle $A B C: A_{1}, A_{2}$ on $B C ; B_{1}, B_{2}$ on $C A ; C_{1}, C_{2}$ on $A B$. These points are the vertices of a convex hexagon $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$ with equal side lengths. Prove that the lines $A_{1} B_{2}, B_{1} C_{2}$ and $C_{1} A_{2}$ are concurrent.
2. Let a_{1}, a_{2}, \ldots be a sequence of integers with infinitely many positive terms and infinitely many negative terms. Suppose that for each positive integer n, the numbers $a_{1}, a_{2}, \ldots, a_{n}$ leave n different remainders on division by n. Prove that each integer occurs exactly once in the sequence.
3. Let x, y and z be positive real numbers such that $x y z \geq 1$. Prove that

$$
\frac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}}+\frac{y^{5}-y^{2}}{y^{5}+z^{2}+x^{2}}+\frac{z^{5}-z^{2}}{z^{5}+x^{2}+y^{2}} \geq 0 .
$$

$45^{\text {th }}$ International Mathematical Olympiad Merida, Mexico

Day II

July 14, 2005
4. Consider the sequence a_{1}, a_{2}, \ldots defined by

$$
a_{n}=2^{n}+3^{n}+6^{n}-1 \quad(n=1,2, \ldots) .
$$

Determine all positive integers that are relatively prime to every term of the sequence.
5. Let $A B C D$ be a given convex quadrilateral with sides $B C$ and $A D$ equal in length and not parallel. Let points E and F lie on the sides $B C$ and $A D$ respectively and satisfy $B E=D F$. The lines $A C$ and $B D$ meet at P, the lines $B D$ and $E F$ meet at Q, the lines $E F$ and $A C$ meet at R. Consider all the triangles $P Q R$ as E and F vary. Show that the circumcircles of these triangles have a common point other than P.
6. In a mathematical competition 6 problems were posed to the contestants. Each pair of problems was solved by more than $\frac{2}{5}$ of the contestants. Nobody solved all 6 problems. Show that there were at least 2 contestants who each solved exactly 5 problems.

