Estonian math competitions 2000/2001 2. Find the largest real number K having the following property: for any positive
real numbers a, b, ¢ satisfying the inequality a+b+4c¢ < K, the inequality abe < K

also holds.
We thank the IMO community for many of these problems which have been taken
from various materials distributed at the recent IMO-s. 3. Prove that, for any integer n > 0, the number 11...1 is divisible by 3", but is
3~ digits
not divisible by 3"+,
Autumn Open Contest: October 2000
4. The terms of the sequence ay, as, as, ... satisfy the condition a, = a,_1 — a,_2

for any n > 3. Find the sum of the first 2000 terms of this sequence, if the sum

Juniors (up to 10th grade) of the first 1997 terms is 2002 and the sum of the first 2002 terms is 1997.

1. How many positive integers less than 20002001 and not containing digits other 5. On a plane n points are given, no three of them collinear. At most how many line
than 0 and 2 are there? segments it is possible to draw between these points in such a way that the line

segments form no triangle with vertices at the given points?
2. Find the two last digits of the number 114 2! 4 3!+ ...+ 2000!.

3. Consider points C7, Cy on the side AB of a triangle ABC', points A;, A3 on
the side BC' and points By, Bz on the side C'A such that these points divide the
corresponding sides to three equal parts. It is known that all the points Ay, Ag,
By, By, C7 and C are concyclic. Prove that triangle ABC' is equilateral.

Solutions of Autumn Open Contest

J1. Answer: 136.

The set of integers under consideration consists of all integers with up to 7 digits

4. Real numbers & and y satisfy the system of equations containing only digits 0 and 2, all 8-digit integers of the form 20000+ and the
integer 20002000. There are 2°~1 integers with exactly & digits 0 and 2, and 23
v +y+ * _ 10 integers of the form 20000#x*x. So the required number of integers is
Y (2042 4+ .. +254+8+1=(2"-1)+9=136.
r(r+y) 20
J, N J2. Answer: 13.

The product 1-2-...-10 has 2, 5 and 10 as factors, therefore being divisible by
100. Hence the last two digits of n! are zeros for any n > 10 and it suffices to
find two last digits of 114+ 2!+ ...+ 9!. The two last digits of the summands are
01, 02, 06, 24, 20, 20, 40, 20 and 80, yielding 13 as the answer.

Find the sum of all possible values of the expression = + y.

m
5. Let m* = m+ 3 for any odd integer m and m™ = — for any even integer m.

a) Find all integers k such that &*** = 1.

b) Prove that, for every odd integer K, there exist precisely three different C
integers k such that £*** = K.

c) How many different integers k& with the property &™** = I exist for an even
integer K7

Seniors (grades 11 and 12) A Cq Cs B
Figure 1
1. Points A, B, C', D, F and F are given on a circle in such a way that the three
chords AB, CD and E'F intersect in one point. Express angle EF' A in terms of J3. Label the points on the sides of the triangle so that |ACy| = |C1Cs| = |C2B|,
angles ABC and CDFE (find all possibilities). |BA1| = |A1A2] = |A2C| and |C'By| = |B1Bz| = |B2A| (see Fig. 1). Then we have



J4.

J5.

S1.

(BA{Cy = /BA3Cy = /BCA and /BC3A; = /BC1Ay = /BAC'. Since points
Ay, Ay, Cq and O3 are concyclic, we get /BAyCy = 180° =/ ACyA; = /BCyAq,
which gives /BCA = /BAC. The equality ZBAC = /CBA follows by symme-
try.

Answer: 10.

By Viete’s theorem, the possible values of & + y are included in the set of roots
of the quadratic equation

a?—10a+20=0.

This equation has two different roots because D = 102 —4-20 > 0. Viete’s
formulae give 10 to be the sum of these roots. It remains to check that 11 is not
r+y
11— (2 +y)

us to find the corresponding values for z and y).

among the roots (as y = from the first equation, 4+ y # 11 enables

Answer: a) 1, —2 and 8; c¢) 5.

a), b) Observe that if m* is odd, then both m and m™ are even. Hence if
K = k™" is odd, then £ = 2K, and k and k™ are not both odd. This gives the
following three possibilities.

1) If both k and k* are even, then k = 2k* = 4k™ = 8K.

2) If k is odd and k* is even, then k = k* —3 = (2k™ — 3) = 4K — 3.

3) If k iseven and k* is odd, then k =2k = 2-(k**—3) = 2-(2K —3) = 4K —6.
The numbers 8K, 4K — 3 and 4K — 6 are pairwise distinct since modulo 4 they
are congruent to 0, 1 and 2, respectively. For a), K =1 gives k € {1, —2, 8}.
c) Let now K be even. If £** is even, then we get the same three possibilities for
k as above. If k** is odd, then £ is even and k can be either even or odd.

4) If k is even, then k = 2k™ = 4k™ = 4(K —3) = 4K — 12.

5) If k is odd, then k = k*— 3 = 2k™ — 3= 2(K — 3) — 3 = 2K — 9.

Since K is even, the numbers 8K, 4K —3, 4K —6 and 4K — 12 are congruent to
0, 5, 2 and 4, respectively, modulo 8. Moreover, 2K — 9 is congruent to either
3 or 7 modulo 8. Hence these five numbers are pairwise distinct.

Answer: Angle FF A is equal to either ZABC + ZCDE,or LZABC — LCDE, or
(CDE — /ABC, or 180° — /ABC — /CDE.

Given the chords AB and C'D, the chord EFF can be drawn in four essentially
different ways — point £ can lie on the circle between points D and A, between
points A and C', between points C' and B or between points B and D (see
Fig. 2).

Let us find ZEFA for case (c). Since FFC and CDFE are angles subtended
by the same chord EC', we have /EFC = LCDE; similarly ZCFA = /ABC'.
Hence

LEFA=/CFA+(EFC =(ABC+ LCDE .

S2.

S3.

S4.

In cases (a) and (b) similar arguments give ZEFA = /CDE — LABC and
LEFA=/ABC — LCDFE, respectively.

E F
A C A C 4 ¢ 4 C
E F F E
D B D F B D B D g B

(a) (b) () (d)
Figure 2

Consider case (d). Since EFA and ADE are opposite angles of a cyclic quadri-
lateral ADEF and LADE = ZADC + LCDE = LABC 4+ LCDE, we have

LEFA=180°— LADE =180° — LABC — LCDE .

Answer: 3v/3.
Let a +b+c¢ < K. By the AM-GM inequality we have

abe <

~

b 3 KN\3 K?
(u) < (_‘) — K.
3 3 27
(2
Hence if o7 < 1, or equivalently K < 3\/5, the required condition is satis-

K
fied. However, if K > 3v3 and a = b = ¢ = %, then a + b+ ¢ = K and

2
> > K, so the condition is not satisfied.

abe = K -
We use induction on n.

Base: The proposition holds for n = 0 since 1 is divisible by 3° = 1 and is not
divisible by 3! = 3.

Step: Observe the equality

11...1=11...1-100...0100...01.
— = S——— N—

3nt1 3n 3n—1 3n—1

The first factor here is divisible by 3" but not by 3"*! by the induction hypothesis,
and the second factor is divisible by 3 but not by 9. Since 3 is prime, this implies
that the product is divisible by 3"*1, but not by 372,

Answer: —2012.



S5.

Denote a1 = p and as = ¢. It is easy to see that

ap=pif k=1,7,13,...;

ap =q if k=2,814,...;

ap=q—pif k=3,9,15,..;

ap = —p if kK =4,10,16,...;

ap = —q if k=5,11,17,..;

ap=p—gq if k=6,12,18,....
Observe that the sum of any six consecutive members of the sequence is equal to
zero. Denoting Sy = ay + ...+ ai, we get

Sp=pift k=1,7,13,..;

Sy =p+qgif k=2,814,...;

Sy =2qif k=3,9,15,..;

Sy =2¢—pif k=4,10,16,...;

Sy =qg—pif k=511,17,..;

Sy =01if £ =6,12,18,....
Hence ¢ — p = S1997 = 2002 and 2g — p = S002 = 1997, which give ¢ = —5 and
p= —2007 with 52000 = p—|— q = —2012.

n? n?—1
Answer: e for even n and

for odd n.

Divide the points into two subsets with cardinalities as close to each other as
possible, and draw a line segment between any two points from different subsets.
Then each closed line formed by these line segments contains an even number

of links and hence the line segments do not form any triangles with vertices at
. . . . /n\?2 n?
the given points. The number of line segments is (—) =7 for even n and

2

2

n;l‘n—Qi—l -l 4_1 for odd n.

Now prove that there cannot be more line segments. Consider any collection of line
segments satisfying the conditions of the problem. Let m be the maximal number
of line segments incident to one point, and let X be any point incident to m line
segments. Let A be the set of the other endpoints of these m line segments, and
B be the set of the other n —m points (including X ). FEach point of A can be
joined only to points of B because any two joined points from A together with
X would form a triangle. Hence each of the m points of A occurs as an endpoint
for at most n — m line segments. On the other hand, each of the n — m points
from B occurs as an endpoint for at most m line segments by the choice of m.
So there is at most m(n —m) 4+ (n —m)m = 2m(n — m) segment-endpoint pairs,
and since every line segment has two endpoints, we have at most m(n — m) line
segments. It remains to notice that this expression achieves its maximum when
the difference of m and n — m is as small as possible, i.e. if m = n — m for even
n and if |m — (n — m)| =1 for odd n.

Spring Open Contest: March 2001

Juniors (up to 10th grade)

1. Eight students, Anne, Mary, Cathy and Tina, Anthony, Mark, Carl and Tom have
to work in four pairs, one boy and one girl in each pair. They know each other,
with only these exceptions: Anthony knows neither Anne nor Mary; Mark doesn’t
know Mary and both Carl and Tom know neither Cathy nor Tina. How many
ways are there to divide the students into pairs, so that each boy could work with
a girl he knows?

2. In a triangle ABC', the lengths of the sides are consecutive integers and median
drawn from A is perpendicular to the bisector drawn from B. Find the lengths

of the sides of triangle ABC'.

3. In a school locker room there are 60 lockers
in three rows. The lockers in each row are la-
belled from left to right with numbers 1 to 20 L
in the top row, 21 to 40 in the middle row and
41 to 60 in the bottom row.

M

Kate’s, Lisa’s and Mary’s lockers are located as shown in the figure. Each of the
three locker numbers is divisible by the number of Mary’s house, which is not 1.

a) What is the number of Mary’s house?
b) What could be the numbers on the girls’ lockers?

4. Integers a, b, ¢ and d satisly |ac + bd| = |ad 4+ be] = 1. Prove that either
la] = [b]=1 or |c|=|d| =1.

5. A convex hexagon is constructed from n pieces, each of which
is an equilateral triangle (one example is given in the figure).
a) Prove that the hexagon is equiangular.

b) Find all possible values of n.

Seniors (11th and 12th grade)

1. The serial numbers of lottery tickets are 7T-digit integers. It is known that the
serial number of a winning ticket has seven distinct digits and is divisible by each
of its digits.

a) Prove that the serial numbers of all winning tickets consist of the same digits.

b) Find the largest possible serial number of a winning ticket.



Let us call a convex hexagon ABCDEF boring if LA+/C+.F =/B+/.D+/F.
a) Is every cyclic hexagon boring?

b) Is every boring hexagon cyclic?

Find all real-valued functions f(z) defined for all real numbers which satisfy the

condition f(2001a:—|— f(O)) = 200122 for each real x.

. For some 0 < z,y < 7, two of the three expressions sin® z + sin®y, sinZ(a: +vy)

and 1 have equal values and the third one is different.
a) Which of the three expressions has a different value?
b) Give an example of # and y for which such a situation occurs.

. There are 10 small boxes numbered from 1 to 10, and one large box. John puts

some balls in some (or all) of the small boxes, and starts relocating them by the
following rules:
e during each move, John removes all balls from any small box numbered n
where the number of the balls equals n;
e he adds these balls into boxes 1 to n — 1 (one ball into each box) and puts
the remaining ball into the large box.

He continues this way until he cannot make another move according to these rules.
Find the largest possible total number of balls in the small boxes at the beginning
of the game, for which it is possible to put all balls in the large box by the end of
the game.

Solutions of Spring Open Contest

J1.

J2.

J3.

Answer: 4.

It is clear that Carl and Tom can only work with Anne and Mary: we obtain two
ways to form two pairs. Now, Anthony and Mark have to work with Cathy and
Tina, whom they both know: there are also two ways to form the two remaining
pairs. Hence, altogether there are four ways to form the pairs.

Answer: 2, 3 and 4.

Let D be the midpoint of BC', then the medianis AD. Since the bisector of /B is
also an altitude in the triangle ABD, that triangle is equilateral, i.e. |BD|= |BA|
and in the original triangle ABC we have |BC| = 2|AB|. Since the lengths of
the sides of triangle ABC' are consecutive integers, the difference |BC|—|AB| is
either 1 or 2. In the first case |AB| = 1, |BC| = 2 and the length of the side
AC must be either 0 or 3, which is impossible. In the second case we obtain

|AB| = 2, |BC| = 4 and |AC| = 3.

Answer: a) 7; b) 7, 28, 42 or 14, 35, 49.

J4.

J5.

S1.

From the figure we obtain L = K 4+ 21 and M = L 4+ 14 = K 4 35. Since
K, L and M are all divisible by the number of Mary’s house n, the differences
L —K =21 and M — L = 14 are also divisible by n. It follows that the only
possible value of n is 7. Now, since 1 < K < 20, we obtain K =7 or K = 14,
and hence L =28 and M =42 or L =35 and M =49.

If the numbers ac + bd and ad + be have the same sign, then ac + bd = ad 4 be
and 0 = ac+bd—ad—bc = (a—b)(c—d). Hence a =b or ¢ = d. If the numbers
ac+ bd and ad+ be have distinct signs, then 0 = ac+bd+ad+be = (a+b)(c+d)
and a = —b or ¢ = —d. In both cases |a] = |b] or |¢| = |d|. I |a| = |b], then
1 = |ac + bd| is divisible by |a|, therefore |a| = |b] = 1. In case |¢| = |d|, we
similarly obtain |¢| = |d| = 1.

Answer: b) all integers n > 6.

a) Let a vertex of the hexagon be the vertex of k triangles. Then the interior
angle at this vertex must be k-60°. Since the interior angles of a convex hexagon
are less than 180°, none of them can be larger than 120°. Since the sum of the
angles is 720° = 6 - 120°, it follows that all the angles are equal to 120°.

b) There must be at least 6 pieces, because there is at least one triangle on each
side of the hexagon, and since the hexagon has no angles equal to 60°, each
triangle can lie on only one side of the hexagon.

n=7
Figure 3

The constructions for n = 6, n = 7 ja n = 8 are given in Figure 3. We can
continue the same way, adding more large triangles in the middle.

Answer: b) 9867312.

a) Obviously, the serial number cannot contain 0 and must be even. Now, we
cannot have 5 among the digits, because every even number divisible by 5 ends
with a 0. If the serial number didn’t have 9 as one of its digits, it would contain
3 and should be divisible by 3, but the sum of the remaining seven digits is 31,
contradiction. Hence 9 is one of the digits. Now, the serial number is divisible by
9 and the sum of its digits is between 32 and 39. The only possible sum is 36
and the serial number consists of the digits 1, 2, 3,6, 7, 8, 9.

b) Any 7-digit number consisting of these digits is divisible by 1, 3, 6 and 9.
Now we must find the largest possible even number among these which is divisible

by 7-8 = 56. This number is 9867312.



S2.

S3.

S4.

Answer: a) yes, b) no.

B

E F

Figure 4 Figure 5

a) Let ABCDEF be a cyclic hexagon. Since the quadrilaterals ABDF, CDFB
and EFBD are also cyclic (see Fig. 4), we obtain

/BDF =71 — (A, /(DFB=m—(C, LFBD = — LE.

Now, (m — LA)+ (n — LO)+ (n— LE) = 7 , and hence ZA+ LC+ LE = 27.
Thus LB+ /(D4 /F =47 — 27 =27 = LA+ /C 4 LFE, which proves that the
hexagon ABCDEF is boring.

b) Let us compress a regular hexagon along its two opposite sides (see Fig. 5).
The new hexagon is boring since all its angles are equal, but it is not cyclic since
three of its vertices lie on one circle and the rest on another circle.

z? (x —2001)?

Answer. f(x) = 2001 and f(z) = 5001

y— f(0)

5001 such that y = 2001z + f(0),

Since for any real number y there is an « =

y— f(0)

2
5001 ) holds for any real y. Taking y = 0 we

the equality f(y) = 2001 - (

(£(0)”

get f(0) = 5001

and hence f(0) =0 or f(0) = 2001. Therefore the function

2 (y — 2001)2

y _
2001 " TW = "5001

of these satisfy the given conditions.

must be either f(y) =

. It is easy to check that both

Answer: a) sin®(x 4 y) can be the only expression with a different value; b)

choose 0 < z < g arbitrarily and take y = = + g

a) Let sin®(z 4+ y) = 1. We shall prove that in this case also sin®z +sin®y = 1.
3T

From the equation sinZ(a: +y) = 1 we have either z +y = g or r+y= —.

2

S5.

. LT . /3T . m
Since 5111(5 —x) = cosz and snl(? —x) = sm(ﬂ'—l— (5—1‘)) = —cosx , then

in both cases sin? z + sin? y = sin? # 4+ cos?z =1 .
Let sin? z +sin y = sinZ(a: +y). Weshall prove that both of these are equal to 1.
Applying the formula for sin(x 4+ y) and squaring, we get

sin?x + siny = sin?z cos®y + sin?y cos’z + 2sin z siny cos z cos y ,
sin?z (1 — cos?y) + sin®y (1 — cos’x) — 2sinxsinycoszcosy =0,
2sin?z sin’y — 2sin sinycos xcosy = 0.
Since 0 < z,y < m, neither sinz nor siny equals 0. Hence we must have
sinzsiny —coszcosy = 0, i.e. cos(z +y) = 0 and sin(z + y) equals to either 1

or —1, whence sinZ(J: + y) = 1. So the only expression that can have a different
value is sin®(x + y).

b) Taking0<x<gand y:x—i—g,weget

2

.9 2 .2 . 2 ™ a2 _
sIn“x +sin“y = sin“x + sin x—|—§ =sin“x 4+ cos“x = 1.

3
Since g<y<x—|—y:g—|—2x<7ﬂ-,wehewe sin2(a:—|—y);é1-

Answer: 41.

We shall first show that the total number of balls in the small boxes cannot exceed
41. John can empty box number 10 only once, since no balls are put into it during
the relocations. He can also empty box 9 only once, since at most one ball is put
into it (from the tenth box). Also, boxes 8, 7 and 6 can be emptied only once.
Box number 5 can be emptied at most twice (at most 5 balls will be added to it
from boxes with bigger numbers). Box 4 can also be emptied at most twice, box
3 at most 4 times, box 2 at most 7 times and box 1 at most 21 times. John can
therefore put no more than 41 balls in the large box.

We shall now find a way to place 41 balls in the small boxes, so that all boxes could
be emptied. No balls are added to box 10, therefore it must contain 10 balls. One
ball will be added to box 9, therefore it must contain 8 balls in the beginning.
Similarly there must be 6, 4 and 2 balls in boxes 8, 7 and 6 respectively. Since
5 balls are added to box 5, it must contain 5 balls in the beginning in order to
be emptied twice. Box 4 must contain one ball, box 3 three balls, boxes 2 and 1
must contain 1 ball. The number of balls in the small boxes is now 41. It is easy
to check that if John always empties the box with the smallest possible number,
all balls will finally be in the large box.

10



Final Round of National Olympiad: March 2001
9th grade

1. John had to solve a math problem in the class. While cleaning the blackboard, he
accidentally erased a part of his problem as well: the text that remained on board
was 37 (72 + 3x) = 144x45, where * marks an erased digit. Show that John can
still solve his problem, knowing that x is an integer.

2. Dividing a three-digit number by the number obtained from it by swapping its
first and last digit we get 3 as the quotient and the sum of digits of the original
number as the remainder. Find all three-digit numbers with this property.

3. A circle of radius 10 is tangent to two adjacent sides of a square and intersects
its two remaining sides at the endpoints of a diameter of the circle. Find the side
length of the square.

4. Tt is known that the equation |z — 1|+ |# — 2|+ ...+ |& — 2001| = a has exactly
one solution. Find a.

5. A table consisting of 9 rows and 2001 columnsis filled with integers 1, 2, ..., 2001
in such a way that each of these integers occurs in the table exactly 9 times and
the integers in any column differ by no more than 3. Find the maximum possible
value of the minimal column sum (sum of the numbers in one column).

10th grade

1. A convex n-gon has exactly three obtuse interior angles. Find all possible values
of n.

2. Find the minimum value of n such that, among any n integers, there are three
whose sum is divisible by 3.

3. There are three squares in the picture. Find the sum of D

angles ADC and BDC.

A B C
1

1 1
4. We call a triple of positive integers (a, b, ¢) harmonic if — + Tt Prove that,
a ¢

for any given positive integer ¢, the number of harmonic triples («, b, ¢) is equal
to the number of positive divisors of ¢2.

5. A tribe called Ababab uses only letters A and B, and they create words according
to the following rules:

11

(1) A is a word;

(2) if w is a word, then ww and ww are also words, where @ is obtained from
w by replacing all letters A with B and all letters B with A (zy denotes the
concatenation of z and y);

(3) all words are created by rules (1) and (2).

Prove that any two words with the same number of letters differ exactly in half of
their letters.

11th grade

1. The angles of a convex n-gon are «, 2a, ..., na. Find all possible values of n

and the corresponding values of «.

. A student wrote a correct addition operation B + == 7 to the blackboard, such

D

that both summands are irreducible fractions and F' is the least common multiple
E
of B and D. After that, the student reduced the obtained sum 7 correctly by

an integer d. Prove that d is a common divisor of B and D.

. Points D, F and F are taken on the sides BC', CA, AB of a triangle ABC,

respectively, so that the segments AD, BE and CF have a common point O.
|AO|  |AE] |AF|

P that = .
rove st op| T 1EC| T |FB

. Let z and y be non-negative real numbers such that z +y = 2. Prove that

2y (2 +y?) < 2.

. Consider all trapezoids in a coordinate plane with interior angles of 90°, 90°, 45°

and 135°, such that their bases are parallel to one of the coordinate axes and
all vertices have integer coordinates. Define the size of such a trapezoid as the
total number of points with integer coordinates inside and on the boundary of the
trapezoid.
a) How many pairwise non-congruent such trapezoids of size 2001 are there?
b) Find all positive integers not greater than 50 that do not appear as sizes of
any such trapezoid.

12th grade

1. Solve the system of equations

<

sine =
siny = x

12



Find the maximum value of k& for which one can choose k integers out of
1,2, ..., 2n so that none of the chosen integers is divisible by any other chosen
integer.

Let I and r be the midpoint and radius of the incircle of a right-angled triangle

ABC' with the right angle at C'. Rays Al and BI intersect the sides BC' and

1 1 1
AC' at points D and F, respectively. Prove that m + m =

Prove that, for any integer @ > 1, there is a prime p such that 1+a+a?+...4a"~*
is composite.

Consider a 3 x 3 table, filled with real numbers in such a way that each number
in the table is equal to the absolute value of the difference of the sum of numbers
in its row and the sum of numbers in its column.
a) Prove that any number in this table can be expressed as a sum or a difference
of some two numbers in the table.
b) Show that there exists such a table with numbers in it not all equal to 0.

Solutions of Final Round

9-1.

9-2.

Answer: = 1271.

From the given equality we obtain 111(24 + z) = 14%x45. To find the number
y = 24 + x, note that

111-1000 = 111000 < 14%%45 < 222000 = 111 - 2000,

therefore y is a 4-digit number, with 1 as its first digit. Evidently y must end
with 5. Let y = 1ab5, where 0 < a, b < 9. Writing out the multiplication we
see that b+ b ends with 4, hence b = 9 and there is a carry of at least 1 from
the third position. Since there is no carry to the first position, we have a < 2.
If the carry from the third position were more than 1, we would have a > 8, a
contradiction. Hence ¢ = 2 and = = 1295 — 24 = 1271.

Answer: 441 and 882.

We look for a number abe such that abe = 3cba + (a +b+c), or 32a = 100c+ 7b.
Hence 1 < ¢ < 3, and we have 3 cases.

1) If ¢ =1, then 100 < 32a¢ = 100 + 756 < 163 which implies 4 <a < 5. If a =4,
then 128 = 100+ 7b and b =4. If ¢ =5, then 160 = 100 4+ 7b and b is not an
integer.

2) If ¢ = 2, then 200 < 32a = 200 4+ 7b < 263 which implies 7 <a < 8. fa =7,
then 224 = 2004 7b and b is not an integer. If @ = 8, then 256 = 200475, giving
b=_8.

13

9-3.

9-4.

9-5.

3) If ¢ = 3, then 300 < 32a = 200 + 7b < 363 which implies @ > 10, a contradic-
tion.
Answer: 10+ 5v/2.
| B C
0
\ A;

Figure 6

Introduce a coordinate system where the sides of the square tangent to the circle
are on the coordinate axes—then the centre of the circle is O(10,10) (see Fig. 6).
Let the side of the square be a (evidently a > 10) and the intersection points of
the circle with its two other sides be A and B. As AB is the diameter of the
circle, the common point C(a,a) of these two sides lies on the circle. Since C'O

is a radius, we obtain /(a — 10)2 4 (a — 10)2 = 10, giving a — 10 = 5v/2 and
a=10+5v2.

Answer: 1001000.

Note that if # is a solution of the equation, 2002 — z is also a solution. For
uniqueness we have & = 2002 — z, or « = 1001. In this case

a=10004+999+...+2+1+0+142+...+999 + 1000 =
= (10004 1) + (999 +2) + ... + (2 + 999) + (1 + 1000) =
= 1000 - 1001 = 1001000 .

Remark. Although this is not required in the problem, it can be verified that
z = 1001 is indeed the only solution of the equation for a = 1001000.

Answer: 24.

The numbers 1 can be in the same column only with numbers 2, 3 and 4. As there
are altogether 4 -9 of these, the 1-s can be at most in four columns. If all 1-s are
in the same column, the minimal column sum is 9. If the 1-s are in two columns,
one of these must contain at least 5 of them and the sum of this column is at most
5.1+4-4=21. If the 1-s are in four columns, then the sum of all numbers in
these columns is 9-(14+2+344) = 90, hence the minimal column sum is at most

{%} = 22. If the 1-s are in three columns, we should have 3-s and 4-s in these
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10-1.

10-2.

10-3.

columns to obtain the largest column sum. In this case the sum of numbers in the
three columnsis 9- (1 + 3+ 4) = 72 and the minimal column sum is at most 24.
From the table below we see that this value is indeed attainable.

111 2 2 6 7 2001
111 2 2 6 7 2001
111 2 2 6 7 2001
33 3 2 2 6 7 2001
33 3 25 6 7 2001
33 3 5 5 6 7 2001
4 4 4 5 5 6 7 2001
4 4 4 5 5 6 7 2001
4 4 4 5 5 6 7 2001

Answer: The possible values of n are 4, 5 and 6.
The sum of the angles of a n-gon is (n — 2) - . Since three of these angles are

greater than g and less than m, and the remaining n — 3 angles are greater than
0 and less or equal to g, we obtain (n—3)-0—|—3-g <(n=2)-r< (n—3)-g—|—3-ﬂ'.

7
Dividing by 7 and transforming yields 3 < n < 7. As n is an integer, we have

4 < n <6, and it is easy to check that all these three values are indeed possible.

~

Answer: n=25.

The sum of any three integers congruent to 0, 1 and 2 modulo 3 is divisible
by 3. Also, the sum of any three integers congruent to each other modulo 3 is
divisible by 3. Consequently, among any five numbers there are three whose sum
is divisible by 3. On the other hand, among the numbers 1, 3, 4 and 6 there are
no three with a sum divisible by 3.

D
B
A C
F G
Figure 7

3
A ;.
nswer 1

Consider points F' and G as shown on Fig. 7. As BC'D and DGF are congruent

15

10-4.

10-5.

11-1.

right-angled triangles, we have
LADF = LADC = LFDG = LADC — (5 - LDFG) =

ZAADC—(g—ABDC),

that implies ZADC' 4+ /BDC' = g—l— LADF. The segments AF and DF are

transformed into each other by a 90° rotation around F. Hence AFD is an

3
isosceles right-angled triangle with ZADF = g, yielding ZADC' + /BDC = Zﬂ-
Remark: There are also solutions using the cosine theorem or the identity

tan « + tan 38
t =
anfa + f) 1 —tanatan 8

As a and b are non-zero integers, we have

11 1 b 1
4= e— atb 1 < ab= (a+b)c <
a b ¢ ab c
— ab—ac—bc=0 < ab—ac—bc+c* = =
< (a—c)(b—rc)=c%
11 1 .-
Now let ——1—32—. If @ and b are positive, then a —¢ > 0 and b—¢ > 0. On
a ¢

the other hand, if a —¢ > 0 and b — ¢ > 0, then a and b are positive. Hence the
harmonic triples (a,b,¢) are in one-to-one correspondence with pairs of positive
integers (r,s), where rs = ¢?, and there are as many such harmonic triples as
there are positive divisors of ¢2.

We use induction on the length of a word. Let u; and us be any different words
of the same length, and suppose the claim holds for all shorter words. As there is
only one word of length 1, uy and uy are constructed by rule (2). This implies
that there exist words vy and vy so that u; = vivy or uy = v171 and us = vyvs
or ug = voU3. Note that vy and vy are of the same length. If vy = vy = v, then
one of the words u; and wug is vv and the other v7, differing exactly in half of
their letters. If vy # vg, then vy and vy differ exactly in half of their letters by
the induction hypothesis, and it remains to show that the latter halves of u; and
ug also differ exactly in half of their letters. If these halves are vy and vy or vy
and v, this is obviously true. The words vy and 73, as well as vy and vy, differ
exactly in the letters where v; and vs coincide—differing therefore also exactly
in half of their letters. Hence in any case uy and us differ in half of their letters.

Answer: The only possibilities are n = 3, o = % and n =4, a = g

16



11-3.

(a + na)

Obviously n > 3. As the sum of angles of the n-gon is n - 5 =x(n—2),
2m(n —2 2m(n — 2

we have a = M Because of convexity, we have na = 771—(71 ) < 7
n(n+1) n+1

yielding n < 5. If n = 3, we obtain « = %; if n =4, then a = g

. Let D’ and B’ be the multipliers of the first and the second fraction, respectively.

Then F = AD' + B'C and F = BD' = DB’, with B’ and D’ coprime since F
is the least common multiple of the denominators. If, for a prime p, p* divides d
with & > 0, then p* divides both E and F. Suppose p* does not divide B. From
F = BD' we obtain that p divides D', hence p also divides B'C = E — AD'.
Therefore, p divides either B’ or C, and as B’ and D’ are coprime, p divides
C. From F = DB’ we get that D is divisible by p*, hence p is a common factor

of C' and D, contradicting the irreducibility of % We conclude that p* divides

B, and similarly also D. Since this is true for any prime divisor p of d, then B

and D are both divisible by d.

Draw a line parallel to BC through A and denote its intersection points with
rays BE and C'F by L and M, respectively (see Fig. 8). From similar triangles

AFE AL AF AM
AFEL and C'EB we have ﬁ = % Analogously ﬁ = ﬁ Moreover,
A AL
from similar triangles AOL and DOB we get % = ﬁ, and analogously
|[AO|  |AM|
— =—.H
0D| = [DC] ence
|AO| |AL|+ [AM| |AL|+|AM| |AL| |AM| |AE| |AF]
|OD| |BD| + |DC| |BC| |BC| = |BC| |EC|  |FB|’
C
L
A B
M
Figure 8
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12-1.

. Denote @« =1 —z, then z =1 —« and from ¢ +y =2 we get y = 1 + a. Now

PPyt = (el (ta) (1-a) +(1+a)’) =
= (1-a)(1+a))? (2+2%) =
= 2(1-a®)?}(1+a%) =2(1 —a*)(1 —a?).

Since x,y > 0, we have |a| < 1 that implies 0 < 1—a? <1 and 0 <1 —a* < 1.
Hence 2(1 — a*)(1 —a?) < 2.

. Answer: a) 7; b) 1,2, 3,4, 6,8, 10, 16, 28 ja 32.

Consider a trapezoid of height h and the length of its shorter base a (see Fig. 9).
The longer base of the trapezoid is of length a + A and thus there is a total of

(2a+h+2)(h+1)
2

N(a,h) = (a+1) + (a+2) + ...+ (a+h+1) =

points with integral coordinates inside and on the border of this trapezoid.

Figure 9

a) We have to find the number of distinct pairs (a, h) for which N(a, h) = 2001.
Taking into account that 2001 = 3 - 2329, we consider two cases:

1) If A = 2k is even, then N(a,h) = (a+k+1)-(2k+ 1) where 2k +1 > 3 and
2k + 1

at+k+1>k+1> + . The factor 2k + 1 can be 3, 23 or 29, yielding the

pairs (665,2), (75,22) and (54, 28).

2)If h =2k —1 is odd, then N(a,h) = (2a+ 2k +1) -k, where h| N(a,h)
k>1and 2a+42k+ 1> 2k 4 3. The factor k£ can be 1, 3, 23 1 a4+ 3
or 29, yielding the pairs (999,1), (330,5), (20,45) and (5,57). 2] 3a+6
b) For h = 1,2, 3, ..., 7 we express the size of a trapezoid in 3 |4a+ 10
terms of a (see the table); if h > 7, then N(a, k) > 50 for any 4|5a 415
a > 1. It is easy to check that numbers 1, 2, 3, 4, 6, 8, 10, 51 6a+ 21
16, 28 and 32 are the only ones that cannot be expressed by
any of the formulae in the table. 6 |7a+28
7| 8a+ 36

Answer: The only solution is « = y = 0.
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Clearly # = y = 0 is a solution. We know that |sinz| < |#|, where equality holds
iff # = 0 (this can be easily proved using derivatives). Now

|z > |sinz| = |y > |siny| = [z],
and at least one of the inequalities is strict if © # 0 or y # 0.

12-2. Answer: n.

Let the chosen integers be aj, ..., a; and, for each ¢ = 1,...,k, let n; be the
exponent of 2 in the prime factorization of «;, i.e. a; = 2" -b; with b; odd. Since
1 < b; < 2n—1, there are n possibilities for the numbers b;. If £ > n 4 1, then
there exist indices ¢ and j such that b; = b; = b and n; > n;. Then a; =2"" - b
is divisible by a; = 2" - b.

If £ < n, then choose any k numbers in the set {n+1, ..., 2n}. None of them
is divisible by another since 2n < 2-(n+1).

12-3. Let @ = ZIAE = /BAI and = /DBI = /IBA, then /EIA=/BID=a+p§
(see Fig. 10). Applying the sine rule for triangle AFEI and the equality
r = |AI|sin«, we obtain

|AE| |AIl r
sin(a + )  sinZAEI  sinasin ZAET '

B

S/

Figure 10

From triangle BDI | we similarly get

|BD|  |BI| r
sinfa +8)  sinZIDB  sinfsin ZIDB

Since sin ZAET = cos 8 and sin ZIDB = cos«, we have

1 n 1 sinacosf sinffcosae sin(a48) 1
|AE| * |BD| rsin(a+f8)  rsinfa+8)  rsinfa+p8)  r°
19

12-4. If @ = 2, then p = 11 gives the desired result:
14+24+44...+20=2"_1=2047=23-89.

If a > 2, then a— 1> 1 and there exists a prime p that divides a — 1. Hence a
is congruent to 1 modulo p and M, =1+4+a+ a’®+ ...+ aP ! is divisible by p.
We also have M, > 1+ a > p, implying that M, is composite.

12-5. a) Let 71, 73, r3 be the sums of numbers in the first, second and third row, and
¢y, €2, c3 be the sums of numbers in the first, second and third column. Denote by
a;; the element in the ¢-th row and j-th column, and notice that all the elements
of the table are non-negative.

Since ry + r9 + 13 = ¢1 + ¢2 + ¢3, we have

ayy = |ri—ci|=(ra+r3) —(ca+ea)| =|(r2—c2) + (rs—c3)| =

= :|:|7“2 — 02| :|: |7“3 —03| = :|:Cl22 :|:a33.

As all the elements are non-negative, ass and azz cannot both have minus sign
here and, consequently, ai; is equal to the sum or difference of two numbers in
the table. The proof for all other elements of the table is similar.

b) The tables below satisfy the required condition for any real z > 0:

0z ]0 x|z | x
0 z| ; x| x| @
0z ]0 20| 2z | 22

IMO Team Selection Test: April 2001
First Day

1. Consider on the coordinate plane all rectangles whose
(i) vertices have integer coordinates;
(ii) edges are parallel to coordinate axes;
(iii) area is 2%, where k =0,1,2....
Is it possible to color all points with integer coordinates in two colors so that no
such rectangle has all its vertices of the same color?

2. Point X is taken inside a regular n-gon of side length a. Let hy, ha, ..., h, be
the distances from X to the lines defined by the sides of the n-gon. Prove that
1 n 1 I 1 S 2m
mtm et —
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3. Let k be a fixed real number. Find all functions f:1R — R such that 3. Answer: If k = 1 then f(z) = « or f(z) = 0;if k # 1 then f(z) = k-1 or

f(z) =0.
2 _ 2
fle) + (f(y)) =kf(z+y) Substituting y = 0 in the original equation we get
for all real numbers z and y. (k- 1)f(x) = F(0)% (1)
If £ # 1, then substituting « = 0 in (1) we get f(0) = 0 or f(0) = k — 1.
Second Day So the solutions in the case k& # 1 are tthe constant functions f(x) = 0 and
flx) =k—1.
4. Consider all products by 2, 4, 6, ..., 2000 of the elements of the set If k =1, then from (1) we get f( ) = 0. Substituting # = 0 in the original
17 17 17 1 } Find the sum of all these products. equation we get ( (y )2 ), and furhter substituting y = 1 we find that
2734 720007 2001 F()y=1or f(1) =
5. Find the exponent of 37 in the representation of the number 111...... 11 as For any non—negative rZeal number z there is a real number y such that y* = z,
3.372000 digits therefore from (f(y)) = f(y*) we get that f(2) > 0 for any z > 0. Also,
product of prime powers. substituting * = —y? in the original equation we get f(—y?) = —(f(y))Z, S0
. 2 2
6. Let C; and Cs be the incircle and the circumcircle of the triangle ABC', respec- f(z) <0 for any = <0. Slnf:e (f(y)) = f(v*) :‘f((_y)Z) = (f(_y)) ; then we
tively. Prove that, for any point A’ on Cs, there exist points B’ and C’ such that must have f(y) = —f(—y), i.e. f is an odd function.
C1 and Cs are the incircle and the circumcircle of triangle A’B’C’, respectively. Now let @ be any real number and z > 0, then denoting /z = y we get
2
Flatz) = flaty®) = o)+ (f(9) = @)+ F (") = f(2)+1(2) - (2)

Solutions of Selection Test
Hence if @ < b, then f(b) = fla+ (b —a)) = f(a) + f(b—a) > f(a), ie. [ is

non-decreasing.
1. Answer: Yes. &

Since f is an odd function, (2) holds also when z and z are both negative. Now
we show, using induction on n, that f(nz) = nf(x) for any real x and integer n.

Indeed, this holds for n = 0 and if f(nz) = nf(z) then

Color the points with integer coordinates in three colors so that on each diagonal
y = x+k all points are of the same color and the colors change in a cyclic manner
when k increases. Since 27 =1 (mod3) for even m and 2™ = 2 (mod 3) for odd

m, it is easy to understand that all three colors are present in vertices of each _ _ _ _
rectangle under consideration. Now recoloring the vertices of some color with one Hnt1)z) = flnzte) = fnz)+ (@) = nflz)+f(@) = (1+1)f(@).
of the remaining two colors, we obtain a coloring with the required properties. Since f is odd, we also have f(—nz) = —f(nz) = —nf(z), i.e. f(nz) = nf(x)
holds for all integers n.
2. Let S be the area of the n-gon and r its inradius, then S =n- ? On the other Earlier we proved that f(1) = 1 or f(1) = 0. If f(1) = 0 then substituting

z=11in f(nx) = nf(x) we get that f(n) = 0 for all integers n, and since f is
non-decreasing, we have f(z) = 0 for all real . We show now that if f(1) =
then f(z) =« for all x. For integers we get it from f(nz) = nf(xz), substituting

1
hand, S = 3@ (h1 +ha+ ...+ hy). Using the AM-HM inequality, we get

. a
- z = 1. For a rational number 5 e have

1 1 1= n " na
0= 1) =0 1(2)

Comparing the lengths of circumferences of the n-gon and its incircle, we get

na > 27r. Hence a a
SO f( ) —. Assume that for some real number = we have f(z) # z, then

1 1 1 n _ 27 b
h_1+h_2+” +E > r > @ f(x) = « + ¢ where ¢ #£ 0. If ¢ > 0, then let » be a rational number such
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that ¢ < r < z + ¢, and if ¢ < 0, then let r be a rational number such that
x> 1> x+e. In the first case we get r < x4+ = f(z) < f(r) = r, in the second
case r >z +¢ = f(x) > f(r) = r, a contradiction.

1001
. Answer: 499M.
The value of
1 1 1
(13) () o (1 g57) -
is equal to the sum of all products of the elements of set A by 1, 2, 3, ..., 2000,

and the value of

(-3 (-3 1 )

is equal to a similar sum where the products by 2, 4, 6, ..., 2000 are taken with
a plus sign but the products by 1, 3, 5, ..., 1999 are taken with a minus sign.
Denote the required sum by S, then
1 1 1
28 = (1+5) - (145) oo (14 gg57) +
1 1 1
+(1-3) (1=5) o (1= 5507) 2=
_ 34 2002 1 2 2000
T2 3 20010 2 3 77 2001
2002 1 1
= — — 2= —_—
2 + 2001 9992001 ’
1001
and S = 499m

. Answer: 2001.

As 37 and 9 are relatively prime it is sufficient to find the exponent of 37 in the
representation of the number

72000

999...... 99 = 103371 =10003""=1.
—_———

3.372000 pumbers

We show by induction on % that the exponent of 37 in the representation of
100037 1 is k 4+ 1. In the case £k = 0 we have

100037 1 = 999 = 33 .37,

i.e. the exponent of 37 is 1. Suppose now that for some k& our assertion holds,

23

and note that

1000377 1 = (1000%7)*% 1 =

= (1000°7= 1) - (1410007 4 (1000°7)* ...+ (1000°7)*) .

The exponent of 37 in the representation of number 100057~ 1 is & 4+ 1 by the
induction hypothesis. Hence it suffices to show that the exponent of 37 in the
representation of

L+ 1000°™ 4 (1000%7) "+ ... + (1000°™)™

is 1. Since 1000 = 1 (mod37) then 1000%” = 1(mod37). Let 1000" = 37¢+1,
then

14 1000%" + (10007 ) +... + (1000%7 ) =
=14+ BT+ 1)+ (B37¢+1)*...+ (37¢+1)*° =
=14+0B7¢+1D)+(2-37¢g+ 1) +...+(36-37¢+ 1) =
37-36
= T-37q+37:372-18-q+37537(m0d372) )
So 1410007 4 (100037 )+ ...+ (1000°7") is divisible by 37 but not by 372,
and the exponent of 37 in the representation of 1000377 1 is k + 2.
Hence the exponent of 37 in the representation of 1000372 1 is 2001.

. Let I and O be the incenter and the circumcenter of the triangle ABC', respec-

tively. We know by Euler’s formula that |OI|> = R* — 2Rr, where r and R are
the radii of the incircle and the circumcircle, respectively.

Assume now that there exists a point A’ on the circle C; such that it is impossible
to construct the points B’ and C’ as required in the problem. Let the tangents
drawn from A’ to the circle C; touch C; in B’ and C’, hence B’C’ is not tan-
gent to the circle ;. Suppose the line B'C’ and the circle ¢; have no points in
common (the case of two common points is similar). Let the distance between the

line B’C" and the circle C; be § > 0.

Now start moving the points B’ and C' along the circle €3 towards A’ in such
a way that the distances from the circle C; to the straight lines A’B’ and A'C’
remain equal (note that they are both equal to 0 at the beginning) — denote
this distance by e. The distance § obviously decreases, whereas the distance e
increases, hence at some moment they must become equal. Now we can increase
the radius » by § = € > 0 to make it the incircle of the triangle A’B’C’. Hence
the triangle A’B’C’ has circumradius R and inradius 7+d, but the distance |O1|
is the same as for the triangle ABC', hence Euler’s formula for triangle A’B’C’
becomes violated.

24



