Estonian math competitions 2001/2002 3. For any positive integer n, denote by S(n) the sum of its positive divisors (in-
cluding 1 and n).

a) Prove that S(6n) < 125(n) for any n.

We thank the IMO community for many of these problems which have been taken ) .
b) For which n does the equality S(6n) = 125(n) hold?

from various materials distributed at the recent IMO-s.

4. In a triangle ABC we have /B = 2. /C and the angle bisector drawn from A

int ts BC 1 int D h that |AB| = |C'D|. Find ZA.
Autumn Open Contest: October 2001 Herects A POl such that |AB] = [C'D]. Fin

5. Let by, bg, ..., b, be a rearrangement of positive real numbers ay, as, ..., a,.
Juniors (up to 10th grade) Prove that
1 1 1
a) (a1+b_) : (a2+b_) (an-i-b—) > 2"
1. A figure consisting of five equal-sized squares is placed as 7 L 2 "

shown in a rectangle of size 7 x 8 units. Find the side length b) if equality holds here for an odd n then at least one of the numbers a; is 1.

of the squares.

2. Find the remainder modulo 13 of the sum 8 Solutions of Autumn Open Contest

12001 4 22001 4 32001 NI 20002001 4 20012001 .

J1. Answer: V5.

3. Find all triples (#,y, z) of real numbers satisfying the system of equations (where Let a be the required side length, then the projections of each side of any square
[r] and {r} denote the integer and fractional part of r, respectively): to the sides of the rectangle are z and y where z* + y* = a®>. We have
@+ [y +{z} = 200,2 8=2r+y+z+y=3z+2y
(e} +y+[2] = 2001 -
[e] + {y} + = = 200,0
T=3z+vy,
4. Consider a point M inside triangle ABC such that triangles ABM , BC'M and
CAM have equal areas. Prove that M is the intersection point of the medians of yielding y =1, # =2 and a = /22 4+ 32 = V5.
triangle ABC'.
J2. Answer: 0.
5. For any integer n > 1 consider all squares with vertices in points having non- Arrange all terms of the sum except 10012001 (which is divisible by 13) in pairs
negative integer coordinates not greater than n. (k2001 (2002 — £)2°°1). Since 2002 is divisible by 13, k2001 4+ (2002 — £)2%0 is
a) How many such squares are there for n =47 congruent to k2901 4 (—k)2001 = 0 modulo 13, i.e. the sum of each pair is divisible
b) Find a general formula for the number R,, of such squares for any n. by 13 and hence the required remainder is 0.

J3. Answer: the only such triple is = 100,15; y = 100,95; z = 99,05.

Seniors (grades 11 and 12) Adding all three equations and using [r]+{r} = r we have #+y+z = 300,15. Sub-

tracting from here the first given equation, we obtain (y—[y])+ (z — {#z}) = 99,95

1. The sum of two distinct positive integers, obtainable from each other by rear- or {y} + [z] = 99,95, yielding {y} = 0,95 and [z] = 99. Similarly we get

rangement of digits, consists of 2001 equal digits. Find all possible values of the [#] +{z} = 100,05 and {z}+ [y] = 100,15, i.e. [x] = 100, {z} = 0,05, {#} = 0,15
digits of the sum. and [y] = 100.

2. The side lengths of a triangle and the diameter of its incircle, taken in some order, J4. Tt suffices to prove that if triangles ABM and BCM have equal areas then M

form an arithmetic progression. Prove that the triangle is right-angled. lies on the median drawn from B. Let K and H be the perpendicular projections



J5.

of A and C to BM , and let BM intersect AC in a point P (see Figure 1). Then

[BM|-|AK| _ o |BM|-|CH]|
f— ABM — BCM—f

and hence |AK| = |CH|. If AC is perpendicular to BM, then K = H = P,
|AP| = |PC| and BP is a median. If AC is not perpendicular to BM, then
clearly one of K and H lies inside triangle ABC' and the other one outside of it.
Hence ZAKP = 90° = ZCHP and ZAPK = /CPH, i.e. triangles AKP and
CHP are congruent, which again yields |[AP| = |PC| and BP being a median.

B
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Figure 1

I
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n=1 n=>2 n

Figure 2

Answer: a) 505 b) 1-n* +2-(n—1)*+... 4+ (n—1)-22 +n-1%.

We first study the possible squares for n = 1,2, 3.

For n = 1 we have a single square of side length 1.

For n = 2 we have 2-2 possible locations for the square of side length 1 and new
possible squares of side lengths 2 and V2, one of each.

For n = 3, we have 3 -3 possible locations for the square of side length 1, 2.2

possible locations for each of the squares of side lengths 2 and V2 and three new
types of squares, one of each (see Figure 2).

We see that for each n we have 1 = 1% possible location for each of the “new”
squares (i.e. squares having all their vertices at the edges of the grid) and for the
next values of n we have 22, 3%, 42 ... possible locations for these squares. Tt
remains to notice that the number of the “new” squares is n since we can place
one of its vertices either in a corner of the grid or in one of the n — 1 points on
the side of the grid, thereby determining the locations of the other three vertices.
Hence for any n we have

Ro=1-2"42-(n—=1)*4+3-n—-2+...4+(n—1)-22 4 n-1?,

yielding R4 = 50.

S1.

S2.

Note. Using the identities R, — R,_1 = n® + (n— 1)2 +...41% and

(n+1)(2n + 1)
6

1249224, . 4n2="L

we can show by induction that

B (n—|—1)2-((n—|—1)2—1)
" 12

Answer: 1,2,3,4,5,6,7, 8.
Let A be any of the digits 0, 1, 2, 3. Taking

n=A(A+5)...(A+5)(A+5)A(A+6),
—_————

1997 digits

m=A(A15) .. (A+5)(AL6)A(A+5),
N—_— —
1997 digits

or

n={A+1)...(A+1) A(A+2),
—_———

1999 digits

m=(A+1)...(A+1)(A+2)A,
N—_—— ———
1999 digits

we have n and m obtainable from each other by rearrangement of digits and

n+m=(24+1)...(24+1),

2001 digits

n+m=(2442)...(2442),

2001 digits

respectively. Hence 1 to 8 are possible digits.
Suppose now that m+n = 99...9 . Moving from right to left it is easy to see
2001 digits

that there can be no carries during the addition. Hence any digit A occurs in
n in these and only these positions where the digit 9 — A occurs in m. Since n
and m are obtainable from each other by rearrangement of digits then any digit
A occurs in n the same number of times as 9 — A # A, and the number of digits
in n, m and also n + m must be even — a contradiction.

Drawing a line through the incenter of a triangle parallel to each of its sides it is
easy to see that the diameter of the incircle is shorter than any of the sides. Let
z and d > 0 be the diameter of the incircle and the difference of the arithmetic
progression, then the side lengths are  +d, ¢ + 2d and z + 3d. Finding the area
S of the triangle in two ways we get

pr=S=\p-(p—(@+d) (p—(z+2d) (p—(z+3d) .

3(x +2d) we have 3(x +2d)x _ 3+ 2d)(x + 4d) (x + 2d)x
4 16

ing 3z = x +4d and x = 2d. Hence the side lengths are z +d = 3d, * 4+ 2d = 4d

, yield-

Since p =



S3.

S4.

S5.

and z 4 3d = bd, i.e. the triangle is right-angled.

Answer: b) for n not divisible by 2 or 3.

Considering the representations of n and 6n as products of primes we see that
any positive divisor of 6n is the product of a positive divisor of 6 and a positive
divisor of n. Hence the positive divisors of 6n are numbers of the form d, 2d, 3d
and 6d where d is a positive divisor of n, and

S(6n) < S(n) +25(n) +3S5(n) +65(n) =125(n) .

Here equality holds if and only if the abovementioned four series of divisors do
not intersect, i.e. no divisor d of n can be represented as 2d’ or 3d’ where d’ is
another divisor of n, or equivalently n is not divisible by 2 or 3.

Answer: 72°.
Let |AB| = |CD| = a, /C = « and LA = 23, then LOAD = /BAD = 3,
/B =2a and /BDA = a+f. Applying the sine rule in triangles AC'D and ABD
we have

sina  |AD|  sin2a

~ sin(a+8)

sinf = a

yielding 2sin 8 cos @ = sin(a+ ), or tan @ = tan 8. Since 0 < a, 8 < 90° we have
a = . Now from 180° = 23+2a+a = 53 we have 8 = 36° and /4 =28 =72°.

a) Using the AM-GM inequality we have:

(a1+%)-...-(an+%) 22-\/%-...-2-\/%:2"-,/H:2".

1
b)If n =1 then a;+— = 2 and hence a; = 1. Suppose now that the claim is true

a
1 i
for any odd integers less than n. The equality holds if and only if a; + 5= 2 Z—
1
for each 7, i.e. a; = —. If a; = b; for some ¢ then a; = b; = 1 and we are done.

i
If a; # b; for all ¢ then consider some ¢; such that a;, # 1. Then b;, equals to
some a;, where iz # i1, and a;, = b;, = —. Also, b;, equals to some a;, where

21
. . 1
iz # ig. Hence a;; = b, = — = a;, .
Cll'2

If ig = il then

1 1 1 1 1 1
(i) (i) = (o) (tat) = (o) () -
bil biQ a;, a;g a;, ag,

1 1 2
o) () <2 Lo
ag, ag, ag,
5

. Define aq, as, ...

Since b;, = a;, and b;, = a;,, we can omit a;, and a;, and use the induction
hypothesis.
. . 1 1 1
If is # i1, we find a;, = b;, = — = —, a;, = b;, = — = a;, etc. Sooner or
a;g aj, a5,
later we must have i;11 = iy for some even k (since a;; # 1). Similarly to the
previous case we can now omit a;,, @;,, ..., a;, and use the induction hypothesis.

Spring Open Contest: February 2002
Juniors (up to 10th grade)

1. Is it possible to arrange the integers 1 to 16

a) on a straight line;
b) on a circle

so that the sum of any two adjacent numbers is the square of an integer?

. Does there exist a rectangle with integer side lengths with the square of its diagonal

equal to 20027

. In atriangle ABC we have |AB| = |AC| and ZBAC = «. Let P # B be a point

on AB and ) a point on the altitude drawn from A such that |PQ| = |QC].
Find £QPC.

, Up, ... as follows:
ar =0, ay=1, a, =5an_1— an_z, for n > 2.

For which n is a, divisible by: a) 5; b) 157

. For which positive integers n is it possible to write n real numbers, not all equal

to 0, on a circle so that each of these numbers is equal to the absolute value of
the difference of its two neighbouring numbers?

Seniors (11th and 12th grade)

. The sides a, b and ¢ of a right triangle form a geometric progression, and abc = 1.

Find a, b, c.

. Let a, b be any real numbers such that |a| # |b|. Prove that

a+bab

>1.
a—2>

=




3.

Let ABC'D be arthombus with ZDAB = 60°. Let K, I be points on its sides AD
and DC' and M a point on the diagonal AC' such that K DLM is a parallelogram.
Prove that triangle BK L is equilateral.

Call a 10-digit natural number magic if it consists of 10 distinct digits and is
divisible by 99999. How many such magic numbers are there (not starting with

digit 0)?

Find the maximum number of distinct four-digit positive integers consisting only
of digits 1, 2 and 3 such that any two of these numbers have equal digits in at
most one position?

Solutions of Spring Open Contest

J1.

J2.

J3.

Answer: a) yes; b) no.

Since 4> = 16 < 1641 and 62 =36 > 16+ 15 then only 9 can be adjacent to 16
(giving 16 +9 = 25 = 5%). Hence it is impossible to arrange the numbers 1 to 16
on a circle in the required manner. A suitable arrangement on a straight line is:

16,9, 7,2, 14, 11, 5, 4, 12, 13, 3, 6, 10, 15, 1, 8 .

Answer: no.

We need to determine whether there exist positive integers a and b such that
a’ 4+ > = 2002. Note that 2002 is divisible by 7 and the square of any integer
is congruent to 0, 1, 2 or 4 modulo 7. Hence a and b must both be divisible
by 7, but then a? 4+ b* is divisible by 49, and 2002 is not divisible by 49.

A
p/2
2
)
B[
B
Figure 3

Answer: LQPC = %.

J4.

J5.

Since |AB| = |AC| then the altitude drawn from A is also an angle bisector.
Note that |@B| = |QC| = |PQ| (see Figure 3), i.e. the triangles BQC', BQP
and PQC' are isosceles. Denote LQBC = LQCB = 3, LQBP = LQPB =~
and LQPC = LQCP =6, then LQCA = ~. From triangle ABC' we now have
a+ 28+ 2y = 180° and from triangle PBC' we have 24 4+ 28+ 2y = 180°. Hence

4@130:5:%.

Answer: a) for any odd n; b) for n = 6k + 1.

a) From the equality a, = bap_1 — a,_3 we see that a, is divisible by 5 if and
only if a,_o is divisible by 5. Since a; = 0 is divisible by 5 but as = 1 is not
divisible by 5, then a,, is divisible by 5 if and only if n is odd.

b) Taking n + 1 instead of n in the given equality we have

p41 = Dy — Gp_1 =5- (5an—1 - an—Z) —p_1=24a,_1 —da,_3 .

From here we see that a,41 is divisible by 3 if and only if a,_» is divisible by 3.
Since a; = 0 is divisible by 3 but a3 =1 and a3 =5-1— 0 =5 are not divisible
by 3, then a, is divisible by 3 if and only if n = 3m + 1 for some m. Hence a,
is divisible by 15 if and only if n is both odd and of the form n = 3m + 1, i.e.
n=~6k+1.

Answer: if and only if n is divisible by 3.

Since each number written on the circle is equal to the absolute value of the dif-
ference of two others, then all these numbers are non-negative. Let a be maximal
among these numbers (then a > 0) and let b and ¢ be the numbers adjacent to
it, with & > ¢ > 0. Since b < a then also b — ¢ < a, and the equality a = b —¢
holds only if 6 = ¢ and ¢ = 0. Hence any number a on the circle must have a
and 0 as its neighbours, and any number 0 must have its both neighbours equal.
We see that the numbers on the circle must be a, a, 0, a, a, 0, ... (see Figure 4)
and hence n must be a multiple of 3.

e=)

a 0

a

Figure 4

On the other hand it is easy to check that for any n = 3k and a > 0 the numbers
a,a,0,a,a,0,..., a, a, 0 satisfy the required conditions.

k triples a,a,0



S1. Answer: @, 1 and V54 1.
2 2
b

Assume w.l.o.g. that ¢ < b < ¢, then a = — and ¢ = bg for some g > 1. Hence
q

from abc = 1 we have b> = 1 and b = 1. From the Pythagorean Theorem we

1N 2
now have (—) +1=¢% or ¢* —¢> — 1 =0. Since the equation z? — z — 1 has
q

1 / 1 1 -1
\/52—1— as its only positive solution, then ¢ = ﬁ2+ and — = \/52 .
q

S2. For any real y and « > 0 we have:
a) Y >1,ife>1and y>0or 2 <1 and y < 0;
b) ¥ <1,ifx>1and y<0or z<1 and y > 0;
c) 2¥=1,ife=1or y=0.

We shall now consider the cases where ab is positive, negative or equal to zero.
If ab > 0, then a and b have the same sign and |a + b] > |a — b] > 0, hence

ab
ath > 1 and ath > 1.
a—1b a—>b
If ab < 0, then a and b have opposite signs and |a — b > |a + b| > 0, hence
a+b a+b|*
0< <1 and > 1.
—-b a—>b
b|" b
If ab =0, then at = 1 since &‘750.
a— a—1b

S3. The rhombus ABC'D consists of two equilateral triangles ABD and BCD. We
shall prove that |[K D| = |LC/| (see Figure 5) — then triangles KBD and LBC are
congruent and |KB| = |LB|, ZKBD = /LBC. Hence LKBL = /DBC = 60°,
i.e. the triangle BK L is equilateral.

D L C

A B
Figure 5

To prove the equality |KD| = |LC| note that LM is parallel to AD and
LIMC = (DAC = /DCA = LLCM. Hence the triangle M LC' is isosceles,
ie. |[LC|=|LM|=|KD|.

S4. Answer: 3456.

We can write any ten-digit number abedefghij as

abede fghiy = 100000 - abede + fghij =
= 99999 - abede + abede + fghij .

Hence abedefghij is divisible by 99999 if and only if the sum abede 4+ fghej is
divisible by 99999. Since each summand here is positive and less than 99999, we
must have abede 4+ fghtj = 99999, or equivalently

a+f=bt+g=c+h=d+i=e+;=9

(since the sum contains only digits 9, no carries can occur on addition). We see
that magic numbers are in one-to-one correspondence with numbers of the form
abcde where a, b, ¢, d, e are five distinct digits such that @ # 0 and the sum of
no two of them is 9. There are 9-8-6-4 -2 = 3456 such numbers abcde.

S5. Answer: 9.

Note that we cannot have more than 3-3 = 9 integers with the required property
since the pairs of first two digits of any two of them must be distinct. A suitable

set of 9 integers is 1111, 1222, 1333, 2123, 2231, 2312, 3132, 3213, 3321.

Final Round of National Olympiad: March 2002
9th grade

1. Points K and L are taken on the sides BC' and C'D of a square ABC'D so that
LAKB = /AKL. Find /KAL.

2. Do there exist distinct non-zero digits a, b and ¢ such that the two-digit number
ab is divisible by ¢, the number bc is divisible by a and @a is divisible by 57

3. Let ay, ag, ..., a, be pairwise distinct real numbers and m be the number of
distinct sums a; + a; (where i # j). Find the least possible value of m.

4. Mary writes 5 numbers on the blackboard. On each step John replaces one of the
numbers on the blackboard by the number x + y — 2z, where z, y and z are three
of the four other numbers on the blackboard. Can John make all five numbers on
the blackboard equal, regardless of the numbers initially written by Mary?

5. There were n > 1 aborigines living on an island, each of them telling only the
truth or only lying, and each having at least one friend among the others. The

10



new governor asked each aborigine whether there are more truthful aborigines or
liars among his friends, or an equal number of both. Each aborigine answered that
there are more liars than truthful aborigines among his friends. The governor then
ordered one of the aborigines to be executed for being a liar and asked each of
the remaining n — 1 aborigines the same question again. This time each aborigine
answered that there are more truthful aborigines than liars among his friends.

Determine whether the executed aborigine was truthful or a liar, and whether
there are more truthful aborigines or liars remaining on the island.

10th grade

1. The greatest common divisor d and the least common multiple v of positive
integers m and n satisfy the equality 3m+n = 3v+d. Prove that m is divisible
by n.

2. Let ABC' be a non-right triangle with its altitudes intersecting in point H. Prove
that ABH is an acute triangle if and only if ZAC'B is obtuse.

3. John takes seven positive integers ai, as, ..., ar and writes the numbers «;a;,
a; +a; and |a; — a;| for all ¢ # j on the blackboard. Find the greatest possible
number of distinct odd integers on the blackboard.

4. Find the maximum length of a broken line on the surface of a unit cube, such that
its links are the cube’s edges and diagonals of faces, the line does not intersect itself
and passes no more than once through any vertex of the cube, and its endpoints
are in two opposite vertices of the cube.

5. The teacher writes numbers 1 at both ends of the blackboard. The first stu-
dent adds a 2 in the middle between them; each next student adds the sum
of each two adjacent numbers already on the blackboard between them (hence
there are numbers 1,3, 2,3, 1 on the blackboard after the second student;
1,4,3,5,2,5,3,4, 1 after the third student etc.) Find the sum of all numbers
on the blackboard after the n-th student.

11th grade

1. Determine all real numbers a such that the equation % + axz* 4+ 1 = 0 has four
real roots forming an arithmetic progression.

2. Inside an equilateral triangle there is a point such that the distances from it to
the sides of the triangle are 3, 4 and 5. Find the area of the triangle.

11

3. The teacher writes a 2002-digit number consisting only of digits 9 on the black-

board. The first student factors this number as ab with a > 1 and b > 1 and
replaces it on the blackboard by two numbers a’ and o’ such that |a —a’| = 2 and
|6 — | = 2. The second student chooses one of the numbers on the blackboard,
factors it as ed with ¢ > 1 and d > 1 and replaces the chosen number by two
numbers ¢’ and d' such that |c—¢'| =2 and |d—d'| = 2. The third student again
chooses one of the numbers on the blackboard and replaces it by two numbers
following a similar procedure, etc. Is it possible that after a certain number of
students have been to the blackboard all numbers written there are equal to 97

. Let aq, as, a3, a4, as be real numbers such that at least NV of the sums a; + a;,

where ¢ < j, are integers. Find the greatest value of N for which it is possible
that not all of the sums a; + a; are integers.

. John built a robot that moves along the border of a regular octagon, passing each

side of the octagon in exactly 1 minute. The robot begins its movement in some
vertex A of the octagon, and further on reaching each vertex can either continue
movement in the same direction, or turn around and continue in the opposite
direction. In how many different ways can the robot move so that after n minutes
it will be in the vertex B opposite to A7

12th grade

1. Peter, John, Kate and Mary are standing at the entrance of a dark tunnel. They

have one torch and none of them dares to be in the tunnel without it, but the
tunnel is so narrow that at most two people can move together. It takes 1 minute
for Peter, 2 minutes for John, 5 minutes for Kate and 10 minutes for Mary to
pass the tunnel. Find the minimum time in which they can all get through the
tunnel.

. Does there exist an integer containing only digits 2 and 0, which is a k-th power

of a positive integer with k > 27

. Prove that for positive real numbers a, b and ¢ the inequality

2(a4—|—b4—|—c4) < (a2—|—b2—|—02)2

holds if and only if there exists a triangle with side lengths a, b and c.

. All vertices of a convex quadrilateral ABC'D lie on a circle w. The rays AD,

BC intersect in point K and the rays AB, DC' intersect in point L. Prove that
the circumcircle of triangle AK L is tangent to w if and only if the circumcircle
of triangle CK L is tangent to w.

12



5.

There is a lottery at John’s birthday party with a certain number of identical
prizes, whereas each of the guests can win at most one prize. It is known that
if there was one prize less than there actually is, then the number of possible
distributions of the prizes among the guests would be 50% less than it actually
is, while if there was one prize more than there actually is, then the number of
possible distributions of the prizes would be 50% more than it actually is. Find
the number of possible distributions of the prizes.

Solutions of Final Round

9-1.

9-2.

9-3.

Answer: 45°.

Let AM be the perpendicular drawn from A to KL (see Figure 6). Since ABK
and AMK are congruent right triangles then |AM| = |AB| = |AD|, i.e. AML
and ADL are also congruent right triangles, and

LKAL = (KAM + (LAM = LKAB + LLAD ,
whence

2/KAL = /KAM + /LAM + (KAB + LLAD = 90°
and LKAL = 45°.

D L C
M

K

A B
Figure 6

Answer: no.

Note that if a, b and ¢ satisfy the required conditions and one of them is even,

¢
then all three are even. Then and 3 also satisfy the required conditions.

a
272
Hence we can assume w.l.o.g. that a, b and ¢ are all odd. Also note that none
of these numbers can be 5, since then the other two should also be 5. Hence it
suffices to consider 1, 3, 7 and 9 and one of a, b and ¢ must be 3 or 9 — let

this be a. Then bc is divisible by 3, which gives {b,c} = {3,9}, a contradiction.

Answer: 2n — 3.

We can assume w.l.o.g. that a; < as < ... < a,. Then

ay+ay<apt+az3<...<ay+a, <ay+a, <...<dadp-1+4an,

13

9-4.

9-5.

10-1.

10-2.

10-3.

i.e. there are at least 2n — 3 distinct sums. Taking a; = 7 we have 14+ 2 = 3
as the minimal sum and (n — 1) + n = 2n — 1 as the maximal sum, so there are
exactly 2n — 3 distinct sums in this case.

Answer: yes.

Denote the numbers written by Mary by a, b, ¢, d and e (not necessarily distinct).
First John can replace each of @ and b by # = ¢+d—e. Then he can replace each
of ¢ and d by e+ x — x = e and finally replace both numbers # by e4+e—e = e:

(a,bye,de) = (z,2,¢,d,e) > (z,2,e,e,€e) = (e,e,¢e,e,€) .

Answer: the executed aborigine was truthful and after the execution only liars
remained on the island.

First note that there was a truthful aborigine on the island before the execution,
since otherwise all friends of each aborigine would have been liars, and hence their
answers would have been true — a contradiction.

Suppose now there was a truthful aborigine on the island after the execution.
Then both his answers must have been true — but this is impossible since the
execution of one aborigine could not change the difference of the numbers of liars
and truthful aborigines among his friends from positive to negative.

Let m = dm’ and n = dn’ where ged (m/,n’) = 1. Then v = m’n’d and we have
3m'd+n’d = 3m'n’d+d, yielding 3m’+n’ = 3m/n’+1 and (3m' —1)(n'—1) = 0.
Since 3m’ — 1 # 0, then n’ —1 =0 and hence n = d divides m.

If H is the orthocenter of triangle ABC', then C' is the orthocenter of triangle
ABH . We’'ll consider three possible cases.

(1) If ABC' is an acute triangle (see Figure 7), then H lies inside triangle ABC
and C' lies outside triangle ABH , whence ABH is an obtuse triangle.

(2) If ABC' is an obtuse triangle with ZACB acute, then assume w.l.o.g. that
LB is obtuse (see Figure 8). Then C' and H lie on opposite sides of AB. Hence
C' is outside triangle ABH, and ABH is an obtuse triangle.

(3) If LACB is obtuse (see Figure 9), then C' lies inside triangle ABH , whence
ABH is an acute triangle.

A A A

Figure 7

Figure 8 Figure 9

Answer: 30.

14



10-4.

10-5.

If there are m odd integers among a;, then the maximum number of odd integers
written on the blackboard is

f(m) = +2-m(7—m):%( 2 m+28m —4m?) =

w)’)
and the maximum value of f(m) is f(4) = f(5) = 30.

It remains to check that these numbers can all be distinct, e.g. for a1 = 2, a; =4,

as =6 and a4 =25 =52, a5 = 125 = 5%, ag = 15625 = 5°, ay = 9765625 = 5'°.

[l
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|
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|

Figure 10

Figure 11

Answer: 3 +4v/2.

The links of such a broken line are the edges of the cube (of length 1) and the
diagonals of its faces (of length \/5) Since the line passes each vertex at most
once, it can have at most 7 links. Coloring the vertices as shown on Figure 10 we
see that opposite vertices are of different colour and the endpoints of the diagonal
of each face are of the same colour — hence an odd number of links have to be
edges of the cube. Also, it is clear from this colouring that no more than three
consecutive links can be diagonals (since the cube has only 4 vertices of each
colour). Tt is now easy to check that a broken line with 1 edge and 6 diagonals is
impossible, hence its length cannot exceed 3 + 4\/5; a suitable broken line of this
length is shown on Figure 11.

Answer: 3% + 1.

Let S,, be the sum of the numbers on the blackboard after the n-th student. We
shall prove by induction that S, = 3" + 1. Indeed, So = 2 = 3° 4+ 1 and each
number that is on the blackboard after the k-th student is counted in exactly two
of the sums written by the (k+1)-th student, with the exception of the two 1-s
written by the teacher which are counted only once — hence

5k+1:Sk+25k—2:3(3’“+1)_2:3k+1+1‘
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11-1.

11-3.

82
Answer: a = ——.

9

Substituting t = z* we get a quadratic equation in ¢, and the equation z* =t
has at most two roots which in this case have equal absolute values. Hence the
four roots of the equation #® + az® 4+ 1 = 0 have to be of the form +zy and
+271. Assuming w.l.o.g. that x; > z¢ we see that these roots form an arithmetic
progression if and only if #; = 3x¢. Since the roots of the equation ¢4 at+ 1 are

1 82
then zj and 81z§, we have 81z5 = 1, yielding zg = 9 and a = —82z5 = -3
36 + 25v/3
. Answer: —

Consider a triangle ABC with a point P inside such that |PA| =3, |PB| =4
and |PC| = 5. Rotating the triangle by 60° around C', we map A to B and B
to some B’ (see Figure 12). Then P maps to P’, where |P'B| = |PA| = 3,
|P'B'| = |PB| = 4 and |P'C| = |PC| = 5. Since CPP’ is an equilateral
triangle then |PP’| = 5. Hence |PB|* 4 |P'B|* = 4% 4+ 3% = 5 = |PP/|?,
and ZPBP' =90°. From triangles APB and BP'B’ we have

LABP + /(BAP = LABP + /B'BP’' =120° — 90° = 30°
and ZAPB = 180° — 30° = 150°. The cosine law in APB now gives
|AB|> = |AP|? + |BP|> =2 |AP|-|BP|-cos LAPB = 25 + 12/3

V3

V3 36 + 253
4 :

- |ABJ]? =
ap = B2

and the area is § =

Figure 12

Answer: no.

The initial 2002-digit number 999...9 is congruent to 3 modulo 4. If N = ab
and N is congruent to 3 modulo 4 then one of ¢ and b is congruent to 3 and
the other is congruent to 1 modulo 4 and the same is true for a’ and b'. Hence
at all times there is a number on the blackboard which is congruent to 3 modulo
4, while 9 is congruent to 1 modulo 4.
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11-4. Answer: 6.
If there are four integers and one non-integer among a; then N = 6. To prove
the maximality we denote the fractional part of # by {x} and note that:
(a) if {a} # {b} and ¢ is any real number then at most one of ¢+ a and ¢+ b
is an integer;
(b) if @ = b then a4+ b is an integer if and only if {a} =0 or {a} = 0,5;
(c) if {a} # {b} and a + b is an integer then neither {a} nor {b} is 0 or 0,5.

Considering now the possible partitions of the set {ai, as, as, as, a5} to subsets
(of elements with equal fractional parts) and keeping in mind the above remarks
(a), (b) and (c) we see that the only case when there can be more than 6 integer
sums a; + a; is when {a1} = {a2} = {as} = {as} = {as5}, and in this case all
these sums are integers.

11-5. Answer: 28=12F=1 _ 1) for n = 2k, and 0 for n =2k + 1.
Colour the vertices of the octagon alternately black and white. Since A and B
are of the same colour and in each minute the robot moves from a vertex of one
colour to a vertex of the opposite colour, then n must be even.

We now label the vertices by 1 to 8 so that A = 1 and B = 5, and denote by

al®) = (a(lk), agk), ceny aék)) the numbers of possibilities, for the robot to reach

vertices 1,2, ..., 8 from A = 1 in k£ minutes. Using induction by m we shall
prove that for any m > 1

a(?m) — (22m—2 4 2m—1’ 0’ 22m—2’ 0’ 22m—2 _ 2m—1’ 0’ 22m—2’ 0) .

Obviously we have al? = (2,0,1,0,0,0,1,0). Suppose now that the claim is true
for m = k and denote 27! = s, then

a(%) — (52 +57 07 527 07 52 - 57 07 827 0) °

Since the robot can move to any vertex M from either of its neighbouring vertices,
we have

a(?k‘-l—l) — (0’ 252 4 s, 0’ 252 — s, 0’ 252 — 8, 0, 252 + S)
and similarly
a(2k+2) — (482 + 25, 0, 482, 0, 452 — 2s, 0, 452’ 0) .

Since 4s% = 22% and 2s = 2*, we have proved the claim for m = k + 1. Hence
the number of possibilities to reach B = 5 from A = 1 in n = 2k minutes is
22k:—2 _ 2k:—1 — 2k:—1(2k:—1 _ 1)

12-1. Answer: 17 minutes.
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12-2.

12-3.

Note that it is possible to get everyone through the tunnel in 17 minutes:
1) Peter and John go through the tunnel (2 minutes);
2) Peter brings back the torch (1 minute);
3) Kate and Mary go through the tunnel (10 minutes);
4) John brings back the torch (2 minutes);
5) Peter and John go through the tunnel (2 minutes).

It remains to show the minimality of this total. Clearly they have to go through
the tunnel an odd number of times and bring back the torch at least twice, hence
they have to go through the tunnel at least 3 times in one direction and 2 times
in another direction. If they go through the tunnel 7 or more times then the total
time cannot be less than 104+245-1 = 17 minutes. If they go through the tunnel
5 times then each pass in the “initial” direction takes at least 2 minutes and one
of these (with Mary) takes 10 minutes. If Peter brings back the torch both times
then Kate and Mary cannot go through the tunnel together and they need at least
104+5+2+2-1= 17 minutes. If someone else brings back the torch at one time
then they need at least 10 +2 4+ 2+ 2+ 1 = 17 minutes.

Answer: no.

Consider an integer N containing only digits 2 and 0 and ending in ¢ zeroes
(> 0), then

N=2...2-100=T...1-2t+t .5,

where the dotted part in 2...2 can contain both 2-s and 0-s (in 1...1 both 1-s

and 0-s respectively). Since 1...1 is not divisible by 2 or 5 then in the case
when N = n* both t + 1 and t have to be multiples of k, yielding k£ = 1.

The given inequality is equivalent to
at 4+ b + ¢ — 2a%0% — 26%¢? — 2c%a? < 0 .
Transforming the left side of this inequality we have
a* + b + ¢t — 2a%b* — 2b%¢? — 2c%a* = (a? 4 b* — ?)? — 4a’H? =
= (a® +b* — ¢* — 2ab)(a® + b* — ¢* + 2ab) =

= ((a=b)*=c*)((a+b)*—c*) =
=(a=b+c)la=b—c)la+b+c)la+b—c).

Hence the given inequality is equivalent to
(a+b+c)lat+tb—c)b+ec—a)(c+a—10b)>0. (1)

Here the first term is positive and at most one of the other three can be negative
(e.g. a+b—c <0 and b+c—a < 0 would give 2b < 0 — a contradiction). Hence
(1) holds if and only if @, b and ¢ satisfy the triangle inequalities.
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12-4. Let wy and wy be the circumcircles of triangles AKL and CKL (see Figure 13).
Suppose that w and wy are tangent to each other in point C', and let I3 be their
common tangent. Then

n n—k n
(KLC =(KCly,=(/BCly = /BDC . k1 = m vl (2)

We have <Z> possible distributions of k prizes among n guests, and

Hence KL || BD and ZADB = LAKL — therefore then angle between AB and

the tangent to w in A is equal to the angle between AL and the tangent to w; Let n be the number of guests and m the actual number of prizes, then we

in A. Since the points A, B, L are collinear then the tangents to w and wj in have <n> =9. < n > and < n > - 3 . <n> Substituting from (2) we
A coincide, i.e. these circles are tangent to each other. m m—1 m-+1 2 \m

This e‘u"gur‘nent can be reveltsed to show that w and w1 being tangent to each other have n—m+l < n > — 9. < n > and 2= <n> _ 3 <n>  Hence
in A implies w and wy being tangent to each other in C'. m m—1 m—1 m+1 m 2 \m

n—m+1=2m, yielding n = 3m — 1, and 2(n —m) = 3(m + 1). Plugging in
n = 3m — 1 here we have 4m — 2 = 3m 4+ 3, whence m = 5 and n = 14. It

remains to calculate <154> = 2002.

IMO Team Selection Test: May 2002
First Day

1. The princess wishes to have a bracelet with r rubies and s emeralds arranged
in such order that there exist two jewels on the bracelet such that starting with
these and enumerating the jewels in the same direction she would obtain identical
sequences of jewels. Prove that it is possible to fulfill the princess’s wish if and
only if » and s have a common divisor.

KLy| =

2. Consider an isosceles triangle K LiL, with KLy|, and let KA, LBy,

Figure 13

3
Lo By be its angle bisectors. Prove that cos ZB1ABy < i

Alternative solution. Let w; and wy be the circumcircles of triangles AKL
and CKL. If w and w; are tangent to each other in A then some homoth- 3
ety relative to A maps w to wy. Since K is the intersection point of AD with
w1 and L is the intersection point of AB with w;, and points B and D lie on w,
then this homothety takes D to K and B to L, whence KL || BD. Since BK
and DL intersect in ' then some homothety relative to C' maps B to K and
D to L. This homothety then maps the circumcircle w of triangle C' DB to the
circumcircle wgy of triangle CKL. Hence w and wy are tangent to each other

in C.

. In a certain country there are 10 cities connected by a network of one-way nonstop
flights so that it is possible to fly (using one or more flights) from any city to any
other. Let n be the least number of flights needed to complete a trip starting
from one of the cities, visiting all others and returning to the starting point. Find
the greatest possible value of n.

Second Day
Similarly we can show that w and ws being tangent to each other in C' implies
w and wjy being tangent to each other in A. . .
4. Let ABCD be a cyclic quadrilateral such that ZACB = 2/CAD and
12-5. Answer: 2002. LACD =2/BAC. Prove that |CA| = |CB|+ |CD|.
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5. Let 0 <a< g and z1, g, ..., &, be real numbers such that

sinzq +sinze +...+sinz, 2 n-sina.
Prove that
sin(z; — ) +sin(zz —a) + ... +sin(e, —a) > 0.

. Place a pebble at each non-positive integer point on the real line, and let n be a
fixed positive integer. At each step we choose some n consecutive integer points,
remove one of the pebbles located at these points and rearrange all others arbi-
trarily within these points (placing at most one pebble at each point).
Determine whether there exists a positive integer n such that for any given N > 0
we can place a pebble at a point with coordinate greater than N in a finite number
of steps described above.

Solutions of Selection Test

1. Note that if ged (r, 5) = d > 1 then the princess’s wish can be fulfilled. Let r' = S

s . .
and s’ = = — we place on the bracelet r’ rubies and s’ emeralds, then again r’

d
rubies and s’ emeralds, etc. (d times) — now any two jewels at distance r’ + s’
have the required property.

Suppose now that the required ordering exists. Label the positions on the bracelet
by 0,...,n—1 where n = r+s (thinking of them as modulo n) and denote by P(7)
the jewel at position ¢ for an ordering P. It suffices to show that ged (v,n) > 1.

Let P be the required ordering, and let a, a4 (where 0 < ¢ < n) be the positions
of the two jewels mentioned in the condition. Then P(a+ j) = P(a+ ¢+ j) for
any j > 0 and hence P(b) = P(b+¢) = P(b+ 2¢) = ... for any position b. Let
k be the smallest positive integer such that n divides k¢, and let R be the set of
all positions with rubies. For any b in R we have k distinct rubies at positions
b,b+1i, ..., b+ (k— 1)i: denote the set of these rubies O(b) and call the orbit
of b. A standard argument shows that the set of all rubies on the bracelet is
the disjoint union of some number of orbits, with each orbit containing & rubies.
Hence k divides r and since n divides ki with 0 < i <n then ged (r,n) > 1.

. Denote o« = LIL1 KLy, p = (KL1Ly = LKLy;L; and &€ = /B1AB; (see Fig-
ure 14). Since By and By are symmetric relative to KA, we have B1B; L KA
and By1Bs || L1Ls, i.e. triangle AByB; is isosceles and AK is its angle bisector.
Since /ByB1Ly = LL3L1B) = /By LBy, then ByL1B; is also isosceles. Denote
s = |BlBQ| = |BQL1| and t = |ABl| = |ABQ|

21

The sine rule in triangle AL, Bz yields

s sin/ByAL, cos&/2

t sinf  cosa/2

2 1
and (f) = LOS&. The cosine rule in triangle AB; By yields
t 1+ cosa

s =12 1% — 2% cos& = 2*(1 — cos ),

2 1
and (?) = 2(1 — cosé&). Hence 1:::%:3 =2(1 — cos) and
1+2 2 2
cosfzi—i— cosa:1_7<1__:§‘
3+ 2cos« 3+ 2cos« 5 b
K
B1 s | D B>
s ¢ ¢ s
£l
Lo A I
Figure 14
. Answer: 30.
Let Ly, ..., Lio be the cities and denote by z;; the minimum number of flights

required to reach L; from L;. Let
m= fggx Zij 5

we can assume w.l.o.g. that ¢ = 1, j = m + 1 and the shortest path from L, to
Lm+1 is

Ly, Loy ..y Ly Ligr .

We continue this path, flying from Ly,41 to Ly49, then to Ly,43 etc. and finally
from L, back to Li:

Ll,LQ,...,Lm,Lm+1—>Lm+2—>...—>Ln—>L1.
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Here each of the 10 — (m+1) + 1 = 10 — m sections denoted by arrows contains
at most m flights, hence the entire round-trip contains at most

m+m-(10—m) =m- (11 =m) <

(m—i—ll—m)? 121
4

5 —
flights, i.e. no more than 30 flights.

An example of a network requiring exactly 30 flights is shown on Figure 15.

CD

T
A
Figure 15 Figure 16

. Denote ZCAD = « and ZBAC = 3, then ZACB = 2« and LACD = 23 (see
Figure 16). Since ABC'D is cyclic then 3a 4+ 35 = ZBCD 4+ /BAD = 180° and
a+ 3 =60°. Applying the sine rule to triangles ABC and ACD gives

|CB|=2R-sinfg, |CD|=2R-sina, [CA|=2R-sin(a+28),

where R is the circumradius of ABCD. Hence it is sufficient to show that
sina+sin g = sin(a +23) if a+ 5 = 60°. Indeed:

sina +sin 8 = 2sin

a+ﬁcosa_ﬁ:2-l-cos(a;ﬁ—ﬁ) =

2 2 2
= c0s(30° — B) = sin(60° + B) =sin(a + 25) .
. Suppose the claim does not hold, i.e.

sin(z; — o) +sin(ze — o) + ...+ sin(zy, —a) <0

which gives

cosxy+ ...+ cosz, > -(sinz1+ ...+ sine,) > n-cosa

sin a
and hence

(sinxl—|—...—|—sinxn)2—|—(cosx1—|—...—|—cosxn)2 >n?.

23

On the other hand,

n n
(sin —|—...—|—sinar:n)2 + (coszq + ...—|—cosar:n)2 = ZZCOS(Z‘Z' —z;) < n?,
i=1j=1
a contradiction.
. Answer: there is no such n.
For n = 1 and n = 2 we cannot place a pebble in any point with a positive

coordinate — hence let n > 3. Consider the infinite sum
S=a" +a"? +a" +...

where 1, #9, 23, ... are the coordinates of the points with pebbles at some
given moment and a a positive real number to be determined later. We
show that it is possible to choose a according to n so that the initial sum
So =a® +a ' +a % +a"3 4 ... converges (for this it suffices to have a > 1)
and at each step the sum S can only decrease. Hence we always have S < So
and it is impossible to place a pebble at a point with an arbitrarily large positive
coordinate N, since for sufficiently large N we have a™¥ > Sj.

To show this consider for n = 2k — 1 the equation

Tz ta? 4. o=t =k g a2 (3)
and for n = 2k the equation

I+ z+ai 4. a7t =f T et (4)

For 0 < = < 1 the left side exceeds the right side but for sufficiently large positive
z the right side exceeds the left side. Hence the equation has a root a > 1. It

. . n+1
remains to show that for any integers m and ¢ such that 1 < ¢ < [ + } the
sum of any ¢ — 1 elements of A = {a™, ™%, ..., ™" 71} does not exceed the
sum of any ¢ elements of A (here m, ..., m+n—1 are the chosen n consecutive

integer points and ¢ is the number of points having a pebble before this step and
no pebble after this step — hence ¢ — 1 points have no pebble before this step and
a pebble after this step). Note that it suffices to have m = 0 and prove that the
sum of ¢t —1 largest elements of A does not exceed the sum of ¢ smallest elements,
i.e.

l4+a+a®+...+a7 a4t

where 1 <t <

1
{n * } = k. This directly follows from (3) or (4) for x = a and

from the fact that since a > 1 then deleting an equal number of terms from each
side makes the left side larger than the right side.
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