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Selected Problems from Open Contests

1. In the final tournament of football championship, the teams are divided into groups
of four. Each team plays one game with every other team in its group. A win gives 3
points, a draw 1 point and a loss 0 points. From each group, two teams advance so that
each advancing team gets at least as many points as each non-advancing team.

a) What is the smallest possible score of an advancing team?

b) What is the biggest possible score of a non-advancing team? (Juniors.)

Answer: a) 2; b) 6.

Solution. a) If one team in a group wins all matches and the other three draw all matches,
then the second advancing team collects just 2 points. Let us prove that a team cannot
advance with less than 2 points. Indeed, if team A gets at most 1 point, it must lose at
least two games. Therefore two teams get at least 3 points and outperform A, so that A

cannot be in top two.

b) If one team in a group loses all matches and the other three win cyclically (X wins
Y , Y wins Z and Z wins X ), then three teams collect 6 points and one of them does
not advance. Let us prove that a team with more than 6 points must advance. If team
C gets at least 7 points, it must win at least two games. As the losing teams can get at
most 6 points, team C must be in top two.

2. In triangle ABC let D, E be the midpoints of AB and AC , respectively. Prove that
the intersection point of the bisectors of angles BDE and CED lies on AB if and only if
the length of BC is equal to the arithmetic mean of the lengths of AB and AC . (Juniors.)

Solution. Let K and L be the intersection points of BC with the bisectors of
angles BDE and CED, respectively (see Figure 1). As DE ‖ BC , we have

∠BDK = ∠EDK = ∠BKD, and |BK| = |BD| =
|AB|

2
. Similarily |CL| =

|AC|
2

.

Therefore

|BK| + |CL| =
|AB| + |AC|

2
.

1

As rays BK and CL are opposite-directed, we have

|BC| =
|AB| + |AC|

2
⇐⇒ |BC| = |BK| + |CL| ⇐⇒ K = L .

3. On some square of an infinite squared plane, there is a cube which covers the square
exactly. The top face of the cube is white, the other faces are black. With one step, one
can turn the cube over any edge so that it starts covering a neighbouring square. Is it
possible to achieve a situation where the cube lies on the initial square with the white
face at the bottom, making exactly

a) 2004 steps; b) 2005 steps? (Juniors.)

B C

A

D E

K L

Figure 1 Figure 2 Figure 3

Answer: a) yes; b) no.

Solution 1. a) Turn the cube two steps forward, one step to the right, two steps backward,
one step to the left (see Figure 2). After these six steps, the cube gets back onto the initial
square but the white face is now at the bottom. The rest 1998 steps are made in pairs:
turn the cube onto arbitrary neighbouring square and then turn it back onto the initial.

b) We colour squares dark and light by diagonals so that the cube lies on a light-coloured
square at the beginning (see Figure 3). Since, from any square, the cube can move only
to squares of the opposite colour, the cube lies on a light-coloured square after any even
number of steps and on a dark-coloured square after any odd number of steps. Thus
after 2005 steps, the cube lies on a square different from the initial.

Solution 2. a) Turn the cube two steps forward, one step to the left, two steps forward,
two steps to the right, four steps backward, one step to the left. After these 12 steps, the
cube is back on the initial square but the white face is now at the bottom. Repeating this
cycle, we see that, after any odd number of repetitions, the white face of the cube is at
the bottom and, after any even number of repetitions, the white face is at the top. Since
2004 = 12 · 167, we obtain the desired result by repeating this cycle for 167 times.

b) Assume that the cube makes a circuit and gets back onto the initial square. Let a,
b, c, and d be the numbers of steps made during this circuit respectively to the right,
to the left, up, and down. Then a = b and c = d. Thus the cube makes altogether
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a + b + c + d = 2(a + c) steps which is even number. Hence the cube cannot get back to
the initial square after 2005 steps.

4. Relatively prime positive integers a and b are chosen in such a way that
a + b

a − b
is

also a positive integer. Prove that at least one of the numbers ab + 1 and 4ab + 1 is a
perfect square. (Juniors.)

Solution 1. Let
a + b

a − b
= m. Then a + b = ma − mb implying

a

b
=

m + 1

m − 1
. As a and b

are relatively prime, there exists an integer k such that m + 1 = ka and m − 1 = kb. By
multiplying these equalities, we get m2 − 1 = k2ab implying k2ab + 1 = m2 . Number k

as a common divisor of numbers m − 1 and m + 1 must be a divisor of their difference
2. Hence k can only be 1 or 2 and we are done.

Solution 2. As

a + b

a − b
=

a − b + b + b

a − b
= 1 +

2b

a − b
,

we see that
2b

a − b
must be an integer. Numbers b and a− b are relatively prime because

a and b are relatively prime. Hence 2 must be divisible by a − b. Therefore a − b = 1 or
a − b = 2. The former case implies 4ab + 1 = 4(b + 1)b + 1 = (2b + 1)2 , the latter case
implies ab + 1 = (b + 2)b + 1 = (b + 1)2 .

5. The teacher has chosen positive integers a and b such that
a

b
·
√

a2 + b2 is an integer.

a) Silly-Sam claims that a is divisible by every prime factor of b. Prove that he is right.

b) Silly-Sam claims that actually b 6 a. Is he right this time? (Seniors.)

Answer: b) no.

Solution. a) Let p be an arbitrary prime factor of b. If the observed expression is an

integer, the number a
√

a2 + b2 must be divisible by p. As p is prime, either a is divisible

by p or
√

a2 + b2 is divisible by p. In the latter case, squaring gives that a2+b2 is divisible
by p2 . By the initial assumption, b2 is divisible by p2 , hence also a2 is divisible by p2 .
Therefore a is divisible by p in both cases.

b) The teacher may choose a = 12 and b = 16. In this case,
a

b
·
√

a2 + b2 = 15 is an
integer. Therefore the inequality b 6 a might be wrong.

6. Two circles C1 and C2 with centres O1 and O2 , respectively, are touching exter-
nally at P . On their common tangent at P , point A is chosen, rays drawn from which
touch the circles C1 and C2 at points P1 and P2 both different from P . It is known that
∠P1AP2 = 120◦ and angles P1AP and P2AP are both acute. Rays AP1 and AP2 intersect
line O1O2 at points G1 and G2 , respectively. The second intersection between ray AO1

and C1 is H1 , the second intersection between ray AO2 and C2 is H2 . Lines G1H1 and
AP intersect at K . Prove that if G1K is a tangent to circle C1 , then line G2K is tangent
to circle C2 with tangency point H2 . (Seniors.)

3
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Figure 4

Solution. Let ∠O1AG1 = α and ∠O1G1A = β

(see Figure 4). If line G1K touches circle C1 , then
∠AH1G1 = 90◦ and ∠H1G1O1 = ∠AG1O1 = β .
Also, ∠G1PA = 90◦ and ∠PAO1 = G1AO1 = α.
From the right-angled triangles AH1G1 and
G1PA, we get

α + 2β = 90◦,

β + 2α = 90◦.

Solving the system gives α = β = 30◦ . Therefore ∠PAG1 = 60◦ and
∠PAG2 = 120◦ − 60◦ = 60◦ . Thus we have ∠PAG1 = ∠PAG2 . As circles C1 and
C2 lie in equal angles and touch at P , their radii must be equal. Therefore AK is the
symmetry axis. By symmetry, line G2K is a tangent to C2 and touches the circle at H2 .

7. A king wants to connect n towns of his kingdom with one-directional airways so
that, from each town, exactly two airlines depart. From each town, it must be possible
to fly to every other town with at most one change. Find the biggest n for which this
plan is feasible. (Seniors.)

Answer: 6.

Solution. From a fixed town, one can get directly to two towns and further to at most
four more towns. Thus the number of towns cannot exceed 1 + 2 + 4 = 7.

Let us assume that a suitable airway plan for 7 towns exists. From each town, there
must be a unique way to every other town (either direct or with one change), otherwise
some town would have less than 6 possible final destinations. Without loss of generality
assume that there is a direct flight from town L1 to towns L2 and L3 , from town L2 to
towns L4 and L5 , and from town L3 to towns L6 and L7 (see Figure 5).

L1

L2

L3

L4

L5

L6

L7

Figure 5 Figure 6 Figure 7

From L2 , there must be a way to all towns in list L1 , L3 , L6 and L7 . As the direct flights
from L2 take to towns L4 and L5 , there must be a direct flight from L4 to two towns in
the list and from L5 to the other two. Without loss of generality assume that there is a
direct flight from L4 to L3 . But now there can be a flight from L4 to none of L1 , L6 , L7

because otherwise there would be two ways to get from town L4 to town L3 , L6 , L7 ,
respectively.

A suitable airway plan for 6 towns exists, as shown on Figure 6 or Figure 7.
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8. For which integers a does there exist two different finite sequences of positive inte-
gers i1 < i2 < · · · < ik and j1 < j2 < · · · < jl such that

(ai1 + 1)(ai2 + 1) · · · (aik + 1) = (aj1 + 1)(aj2 + 1) · · · (ajl + 1) ?

(Seniors.)

Answer: −1, 0, and 1.

Solution. In the case a = −1, both sides of the equation equal to zero whenever both
sequences contain an odd number. In the case a = 0, both sides equal to one irrespective
of the sequences. In the case a = 1, all factors of the products are equal to 2, so the
products are equal whenever the sequences have the same length. Therefore suitable
sequences exist in these three cases.

Let us prove that if |a| > 1, then such sequences do not exist. Suppose the contrary,
i.e. i1 , . . . , ik and j1 , . . . , jl are different sequences that lead to equal products. We
may assume that no integer is in both sequences or else the respective terms can be
cancelled in the products. After deletions, both sequences are still nonempty or else we
get an equation between 1 and the product of integers not being equal to 1. We can also
assume that i1 < j1 .

Multiplying and then removing the parentheses on both sides gives an equation be-
tween sums of powers of a. Both sides contain term 1 and we can reduce that. This
ends up in the equation of form

ai1+···+ik + · · ·+ ai1 = aj1+···+jl + · · · + aj1.

The smallest exponent is i1 on the left-hand side and j1 on the right-hand side. As
j1 > i1 + 1, the right-hand side is divisible by ai1+1 . On the left-hand side, all terms

except the last one are divisible by ai1+1 . Hence the left-hand side is not divisible by

ai1+1 , a contradiction.

Comment. From the solution, we get that for each a (|a| > 1), any finite subset I of
natural numbers can be assigned a unique number

f(I) =
∏

i∈I

(ai + 1).

The number determines the subset uniquely. This can be used in proving that the num-
ber of finite subsets of natural numbers is countable.

9. Mother has baked a platecake and cut it into m×n square pieces of equal size. Kalle
and Juku play the following game. Each player at his move eats two pieces having a
common side. Moves are made by turns, Juku starts. A player who cannot move loses.
Who wins the game if

a) m = 3, n = 3;

b) m = 2004, n = 2004;

c) m = 2004, n = 2005? (Seniors.)
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Figure 8
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Figure 9

20
04

2005

Figure 10

Answer: a) Kalle; b) Kalle; c) Juku.

Solution. a) To Juku’s first move, Kalle can reply with a move after which a part of shape
2 × 2 has been eaten up (see Figure 8). Irrespectively of Juku’s second move, Kalle can
make one more move. After that, Juku has no move.

b) When Juku eats up some two pieces, Kalle replies by eating two pieces which lie
symmetrically with respect to the midpoint of the cake (see Figure 9). This guarantees
that, after every move by Kalle, pieces not yet eaten up are situated symmetrically to
the midpoint of the cake and, as it is not possible to eat two symmetric pieces at one
move by the same player, Kalle can always follow the strategy described. Hence Juku’s
moves come first to the end.

c) On his first move, Juku can eat two pieces between which the midpoint of the cake
lies and later use the strategy of Kalle from part b) (see Figure 10).

Remark. This game is called Cram, its full analysis for the case where length and width
are both odd numbers seems to be quite complicated and is not completed yet.

10. Find all functions f : R → R satisfying

f(x + f(y)) = x + f(f(y))

for all real numbers x and y whereby f(2004) = 2005. (Seniors.)

Answer: f(x) = x + 1 is the only such function.

Solution 1. Taking y = 0, we get the equality f(x + f(0)) = x + f(f(0)). Making the
substitution x + f(0) = z , we obtain f(z) = z − f(0) + f(f(0)) for every real number z .
Hence f is a linear function f(x) = x + a. To find a, take x = 2004 in the last expression
and, by using the known value of the function, obtain a = 1. A quick checking shows
that the function f(x) = x + 1 satisfies the conditions of the problem.

Solution 2. Taking x = −f(f(y)), we see that f(y) = 0 for some y . Then f(x) = x + f(0).
From the condition f(2004) = 2005, we find f(0) = 1. Thus f(x) = x + 1.

11. Three rays are going out from point O in space, forming pairwise angles α, β and
γ with 0◦ < α 6 β 6 γ 6 180◦ . Prove that

sin
α

2
+ sin

β

2
> sin

γ

2
.

(Seniors.)
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Figure 11

Solution 1. Choose points A, B , and C on the three
rays, respectively, so that |OA| = |OB| = |OC| = d

and ∠BOC = α, ∠COA = β , ∠AOB = γ . These
three points must be different and do not lie on the
same line. From isosceles triangle BOC with vertex
angle α and side length d (see Figure 11), we obtain

|BC| = 2d sin
α

2
. Analogously from triangles COA

and AOB , find |CA| = 2d sin
β

2
and |AB| = 2d sin

γ

2
. As

|BC| + |CA| > |AB|,

we obtain

2d sin
α

2
+ 2d sin

β

2
> 2d sin

γ

2
,

giving the desired inequality.

Solution 2. At first, we show that γ 6 α + β . Consider the two of the given three rays
which form angle of size γ , and build two cones by moving the third ray around both
rays. On the plane defined by the axes, the first cone cuts angle α off from angle γ and
the second cone cuts angle β . Assume γ > α+β , then the last two angles do not overlap,
therefore the cones have no common points except the vertex O , a contradiction. Thus
γ 6 α + β . On the other hand, α + β + γ 6 360◦ , giving

γ

2
6

α

2
+

β

2
6 180◦ − γ

2
.

Therefore

sin
γ

2
6 sin

(

α

2
+

β

2

)

= sin
α

2
cos

β

2
+ sin

β

2
cos

α

2
< sin

α

2
+ sin

β

2

because
α

2
,

β

2
and

γ

2
are grater than 0◦ but do not exceed 90◦ , and also cos

β

2
< 1 and

cos
α

2
< 1.

21 84 7
4 12

3

12. We call a number triangle amazing if all its elements are
different positive integers and, under every two neighbouring
numbers, the quotient by division of the greater of two by the
smaller is written. In the figure, one amazing triangle with side
length 3 is shown. Find the smallest number which can occur as the greatest element in
an amazing triangle with side length 4. (Seniors.)

7

10 120 5 15
12 24 3

2 8
4

Figure 12

Solution. Let a1 , a2 , a3 , a4 be the smallest numbers
and b1 , b2 , b3 , b4 be the biggest numbers of the first,
second, third and fourth rows, respectively. Obvi-
ously b4 = a4 and b3 = a3b4 . In the second row,
there exists a number which is the product of the
biggest element in the third row and some other
element in the second. Thus b2 > a2b3 = a2a3a4 .

Finally for the first row, we obtain similarily b1 > a1b2 > a1a2a3a4 . All numbers in the
triangle are greater than 1, otherwise we could find two equal numbers in it. Since all
numbers are different, we have a1a2a3a4 > 2 · 3 · 4 · 5 = 120. Hence b1 > 120. Number
120 is achievable as follows from Figure 12.

Selected Problems from the Final Round of National

Olympiad

1. Rein solved a test on mathematics that consisted of questions on algebra, geometry
and logic. After checking the results, it occurred that Rein had answered correctly 50%
of questions on algebra, 70% of questions on geometry and 80% of questions on logic.
Thereby, Rein had answered correctly altogether 62% of questions on algebra and logic,
and altogether 74% of questions on geometry and logic. What was the percentage of
correctly answered questions throughout all the test by Rein? (Grade 9.)

Answer: 65%.

Solution: Let a, g , and l be the numbers of correctly answered questions on algebra,
geometry and logic, and A, G, and L be the total number of questions on algebra, ge-
ometry and logic, respectively. The conditions of the problem imply a = 0.5A, g = 0.7G,
l = 0.8L, a + l = 0.62(A + L), g + l = 0.74(G + L). After substituting to the fourth and
fifth equation, we obtain 0.5A + 0.8L = 0.62A + 0.62L, or equivalently 0.12A = 0.18L,
giving

A = 1.5L,

and 0.7G + 0.8L = 0.74G + 0.74L, or equivalently 0.04G = 0.06L, giving

G = 1.5L.

Now

a + g + l = 0.5A + 0.7G + 0.8L = 0.75L + 1.05L + 0.8L = 2.6L

and

A + G + L = 1.5L + 1.5L + L = 4L.

Thus the percentage of correct answers was

a + g + l

A + G + L
=

2.6

4
= 65%.
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2. Represent the number

3

√

1342
√

167 + 2005

in the form where it contains only addition, subtraction, multiplication, division and
square roots. (Grade 10.)

Answer: 2
√

167 + 1.

Solution 1. First, isolate the terms divisible by 167:

1342
√

167 + 2005 = 1336
√

167 + 2004 + 6
√

167 + 1 =

= 8 · 167
√

167 + 12 · 167 + 6
√

167 + 1.

Second, represent the result in the form

1342
√

167 + 2005 = (2
√

167)3 + 3 · (2
√

167)2 + 3 · (2
√

167) + 1 =

= (2
√

167 + 1)3.

Therefore

3

√

1342
√

167 + 2005 = 2
√

167 + 1.

Solution 2. Search the answer in the form a
√

167 + b, where a and b are integers. Then
we must have

(a
√

167 + b)3 = 1342
√

167 + 2005,

or equivalently

167a3
√

167 + 3 · 167a2b + 3ab2
√

167 + b3 = 1342
√

167 + 2005.

Thus a and b must satisfy the system

{

167a3 + 3ab2 = 1342

501a2b + b3 = 2005
.

The second equation can be rewritten in the form (501a2+b2)b = 2005. Since a and b dif-
fer from 0 and are integers, 501a2 + b2 must be a divisor of 2005 that is greater than 501.
The only possibility is now 501a2 + b2 = 2005, giving b = 1, a = 2. Simple check shows

that a = 2, b = 1 satisfy the first equation as well. Hence (2
√

167+1)3 = 1342
√

167+2005.

3. A 5×5 board is covered by eight hooks (a three unit square figure, shown
in the picture) so that one unit square remains free. Determine all squares of
the board that can remain free after such covering. (Grade 10.)

Answer: All the squares that are colored dark in the Figure 13.

9

Figure 13 Figure 14

Solution. Suppose all dark squares are covered. Since one hook cannot cover more than
one dark square, in total at least nine hooks are needed. As only eight of these are avail-
able, one of the dark squares must remain uncovered. There are three fundamentally
different possibilities: the free square lies in the corner, in the middle of a side or in the
centre of the board. The corresponding tilings are shown in the Figure 14.

4. Real numbers x and y satisfy the system of equalities

{

sin x + cos y = 1

cos x + sin y = −1
.

Prove that cos 2x = cos 2y . (Grade 11.)

Solution 1. After squaring both sides, we obtain

sin2 x + 2 sin x cos y + cos2 y = 1,

cos2 x + 2 cos x sin y + sin2 y = 1.

After adding the equations and dividing by 2, we obtain

sin x cos y + sin y cos x = 0,

or equivalently

sin(x + y) = 0.

Hence x + y = kπ , where k is integral. Therefore 2x = 2kπ − 2y , giving cos 2x = cos 2y .

Solution 2. After adding the equations, we obtain

sin x + sin y + cos x + cos y = 0,

which is equivalent to

2 sin
x + y

2
cos

x − y

2
+ 2 cos

x + y

2
cos

x − y

2
= 0,

implying

cos
x − y

2

(

sin
x + y

2
+ cos

x + y

2

)

= 0.
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If cos
x − y

2
= 0, then

x − y

2
= (2k − 1) · π

2
, giving 2x − 2y = (2k − 1) · 2π .

Hence cos 2x = cos 2y . If sin
x + y

2
+ cos

x + y

2
= 0, then tan

x + y

2
= −1,

implying
x + y

2
= kπ − π

4
and x + y = 2kπ − π

2
. Therefore

cos y = cos
(

−π

2
− x

)

= cos
(π

2
+ x

)

= − sin x, leading to sin x + cos y = 0 that

contradicts the first equation of the initial system.

5. Let a, b, and n be integers such that a + b is divisible by n and a2 + b2 is divisible
by n2 . Prove that am + bm is divisible by nm for all positive integers m. (Grade 11.)

Solution 1. We prove that a and b are divisible by n, then the claim immediately follows.
As

2ab = (a + b)2 − (a2 + b2),

2ab is divisible by n2 . Let p be any prime in the prime decomposition of n and let α be
its exponent. Then the exponent of p is at least 2α in the prime decomposition of 2ab,
and at least 2α − 1 in the prime decomposition of ab. Therefore at least one of numbers
a and b must be divisible by pα . As a+b is divisible by n and hence by pα , also the other
of the numbers a and b must be divisible by pα . Altogether, this means that both a and
b are divisible by n.

6. A post service of some country uses carriers to transport the mail; each carrier’s
task is to bring the mail from one city to a neighbouring city. It is known that it is
possible to send mail from any city to the capital P . For any two cities A and B , call
B more important than A, if every possible route of mail from A to the capital P goes
through B .

a) Prove that, for any three different cities A, B , and C , if B is more important than A

and C is more important than B , then C is more important than A.

b) Prove that, for any three different cities A, B , and C , if both B and C are more
important than A, then either C is more important than B or B is more important
than C . (Grade 11.)

Solution. a) Let t be any possible mail route from A to P . Since B is more important
than A, the route t goes through B . The end part of t from B to P is a mail route from
B to P . Since C is more important than B , this route goes through C . Therefore, t goes
through C .

b) Assume that the claim doesn’t hold, that is, C is not more important than B and B

is not more important than C . Then there exist a route from B to P not going through
C and a route from C to P not going through B . Consider any route from A to P .
Since B and C are more important than A, this route goes through both B and C . Start
moving from A along this route and find out which of the cities B and C comes up
first. If it is B , then continue along the route to P that doesn’t pass through C . So we
have found a route from A to P that doesn’t go through C , a contradiction with the

11

assumption that C is more important than A. Analogously, if C comes up first, then
we get a contradiction with the assumption that B is more important than A. Thus our
original assumption was false.

Remark. In graph theory, the relation “is more important than” of this problem is called
postdominance.

7. In a fixed plane, consider a convex quadrilateral ABCD. Choose a point O in the
plane and let K , L, M , and N be the circumcentres of triangles AOB , BOC , COD, and
DOA, respectively. Prove that there exists exactly one point O in the plane such that
KLMN is a parallelogram. (Grade 11.)

A B

C

D

K

L

M

N
O

Figure 15

Solution. If O is the point described in the problem, then
we must have KL ⊥ BO because K and L both lie on
the perpendicular bisector of BO. Similarly LM ⊥ CO,
MN ⊥ DO , and NK ⊥ AO . Let O be the intersec-
tion point of the diagonals of ABCD (see Figure 15).
Then both KL and MN are perpendicular to BD, giving
KL ‖ MN . Similarly LM ‖ NK . Therefore the oppo-
site sides of KLMN are parallel, meaning that KLMN

is a parallelogram. On the other hand, if O is a point for
which KLMN is a parallelogram, we have KL ‖ MN .
Then also BO ‖ DO , giving that O lies on the line BD.
We can show similarily that O lies also on the line AC .
Therefore O is the intersection point of the diagonals.

8. Does there exist an integer n > 1 such that

22n
−1 − 7

is not a perfect square? (Grade 11.)

Answer: Yes.

Solution 1. Let us show that if n = 5, then the number 22n
−1 − 7 is not a perfect square.

Note that 210 = 1024 ≡ 1 (mod 11), giving 231 = 2 · (210)3 ≡ 2 (mod 11). Hence the
remainder of division of 231 − 7 by 11 is 6. On the other hand, squares of integers can
have remainders 0, 1, 4, 9, 5, and 3 in division by 11.

Solution 2. Computation gives 231 − 7 = 32768 · 65536 − 7 = 2147483641 but
463402 = 2147395600 and 463412 = 463402 + 2 · 46340 + 1 = 2147488281. So
463402 < 231 − 7 < 463412.

Remark. The number 11 is the least modulus with respect to which 225
−1 − 7 is not a

quadratic residue. There exist greater such numbers, e.g. 31.
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9. Punches in the buses of a certain bus company always cut exactly six
holes into the ticket. The possible locations of the holes form a 3 × 3 table
as shown in the figure. Mr. Freerider wants to put together a collection
of tickets such that, for any combination of punch holes, he would have a
ticket with the same combination in his collection. The ticket can be viewed
both from the front and from the back. Find the smallest number of tickets in such a
collection. (Grade 12.)

Answer: 47.

Solution. Instead of holes, we can deal with non-holes — the locations that are not cut
through during punching. The number of possibilities to choose 3 locations for non-
holes from 9 locations is

(

9

3

)

= 84.

One ticket can represent either one punch combination that is symmetric with respect
to the central axis parallel to the longer sides of the ticket or two different combinations
that are mirror images of each other with respect to this axis. In the case of symmetric
combinations, either all three non-holes lie in the second column (1 possibility) or one
non-hole lies in the second column and other two lie in the same rows, one in the first
column and the other in the second (3 · 3 = 9 possibilities). So there are 1 + 9 = 10
symmetric combinations and 84 − 10 = 74 non-symmetric combinations. The number
of tickets needed to cover these combinations is

10 +
74

2
= 47.

10. Consider a convex n-gon in the plane with n being odd. Prove that if one may find
a point in the plane from which all the sides of the n-gon are viewed at equal angles,
then this point is unique. (We say that segment AB is viewed at angle γ from point O iff
∠AOB = γ .) (Grade 12.)

Solution. Draw the rays from the point described in the problem through the vertices of
the polygon. The point can lie either inside or outside the polygon, therefore there are
two possibilities for the rays: they divide either all the plane or only an angle into equal
angles (see Figure 16). The latter case would imply that the outermost rays were both
incident to one vertex and all the others were incident to two vertices of the polygon,
giving that n is even. This contradiction shows that the point satisfying the conditions
of the problem lies inside the polygon.

Assume now that there are two different points P and Q inside A1A2 . . . An , from
which all the sides are viewed at equal angles. Then for every i = 1, 2, . . . , n (tak-
ing An+1 = A1),

∠AiPAi+1 =
2π

n
, ∠AiQAi+1 =

2π

n
.

13

Figure 16

P

Q

Ai

Ai+1

Figure 17

As P and Q are different, there exist such vertices of the polygon Ai and Ai+1 that the
point Q is inside or on the side of AiPAi+1 , not coinciding with the vertex P (see Figure
17). But this implies ∠AiQAi+1 > ∠AiPAi+1 , a contradiction. Hence there exists only
one point satisfying the conditions of the problem.

Remark. For n = 4, 6 one may find several different points satisfying the conditions of
the problem.

α

11. A string having a small loop in one end is set over a horizontal pipe so
that the ends hang loosely. After that, the other end is put through the loop,
pulled as far as possible from the pipe and fixed in that position whereby
this end of the string is farther from the pipe than the loop. Let α be the
angle by which the string turns at the point where it passes through the loop
(see picture). Find α. (Grade 12.)

Answer:
π

3
.

Solution. Let O and r be the centre point and the radius of the pipe, respectively. Let
l be the length of the string, A and B the loose end and the end with the loop, re-
spectively, and let C and D be the first and the last tangent point with the surface of
the pipe (see Figure 18). At first, find the length of AO , denote by d(α). Obviously
|BC| = |BD| = r cotα. As ∠COD = π − 2α, the string touches the pipe along the arc
CD at angle π+2α and thus the length of the string along the arc CD is r(π+2α). After
subtracting the lengths of segments BC and BD and the arc CD from the total length
of the string, we obtain

|AB| = l − 2r cotα − r(π + 2α).

We also have

|BO| =
r

sin α
.

Altogether d(α) = |AB| + |BO|, or equivalently

d(α) = l − 2r cot α − r(π + 2α) +
r

sin α
.

Now we find α for which the value of d(α) is the greatest. The derivative equals

d′(α) =
2r

sin2 α
− 2r − r cos α

sin2 α
,

14
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Figure 18

or equivalently,

d′(α) = r

(

2 − 2 sin2 α − cos α

sin2 α

)

= r

(

2 cos2 α − cos α

sin2 α

)

.

The condition d′(α) = 0 gives the equation 2 cos2 α − cos α = 0, implying cos α = 0 or

cos α =
1

2
. Thus α =

π

2
or α =

π

3
, bearing in mind that 0 < α 6

π

2
. In order to find

the maximal value, we consider d′(α) in the neighbourhoods of α found out before. The
denominator sin2 α is positive in these neighbourhoods, the numerator 2 cos2 α − cos α

is negative iff 0 < cos α <
1

2
. Therefore d′(α) is positive and d(α) is increasing in the

interval 0 < α <
π

3
, d′(α) is negative and d(α) is decreasing in the interval

π

3
< α <

π

2
.

Hence the function d(α) obtains its maximal value at α =
π

3
.

Remark. The value for α found out in the solution is attainable iff the ratio between the

length of the string and the diameter of the pipe is at least
5π + 2

√
3

6
.

12. A sequence of natural numbers a1 , a2 , a3 , . . . is called periodic modulo n if there
exists a positive integer k such that, for any positive integer i, the terms ai and ai+k are
equal modulo n. Does there exist a strictly increasing sequence of natural numbers that

a) is not periodic modulo finitely many positive integers and is periodic modulo all the
other positive integers;

b) is not periodic modulo infinitely many positive integers and is periodic modulo in-
finitely many positive integers? (Grade 12.)

Answer: a) no; b) yes.

Solution. a) Suppose that the sequence a1 , a2 , a3 , . . . is not periodic modulo finitely
many positive integers, let N be the largest of these. Since 2N > N , this sequence must
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be periodic modulo 2N . On the other hand, if ai and aj are congruent modulo 2N ,
they are also congruent modulo N . Therefore, the sequence is periodic modulo N , a
contradiction.

b) We are going to prove that the sequence ai = 2i−1 is periodic modulo no even num-
bers and all odd numbers. Let first the modulus N be even. If the sequence were
periodic modulo N , then, using a similar argument as in a), we get that the sequence
would be periodic modulo any factor of N . But the sequence 1, 0, 0, 0, . . . of remainders
modulo 2 is not periodic, so our sequence cannot be periodic modulo N . Now let the
modulus N be odd. As the set of possible remainders in division by N is finite, there
exist two indices i and j with i < j such that ai = 2i−1 and aj = 2j−1 are congruent

modulo N . Then the difference 2j−1 − 2i−1 = 2i−1(2j−i − 1) is divisible by N . Since N

is odd, 2j−i − 1 must be divisible by N . Hence a1 = 1 and aj−i+1 = 2j−i are congruent
modulo N , implying also that a2 = 2a1 and aj−i+2 = 2aj−i+1 are congruent modulo N ,
that a3 = 2a2 and aj−i+3 = 2aj−i+2 are congruent modulo N etc, that is, the sequence is
periodic modulo N .

13. A crymble is a solid consisting of four white and one black unit cubes
as shown in the picture. Find the side length of the smallest cube that can
be exactly filled up with crymbles. (Grade 12.)

Answer: 10.

Solution. Since a crymble consists of 5 unit cubes, the volume of the cube made up from
crymbles and hence also the length of its side must be divisible by 5. A cube with the
side length 5 cannot be filled up with crymbles. To prove this, colour 27 unit cubes as
shown in the Figure 19. One crymble cannot fill more than one coloured cube, therefore
at least 27 crymbles are needed. But their volume 27 · 5 = 135 is larger than the volume
53 = 125 of the cube.

A cube with side length 10 can be filled up with crymbles. By putting together two
crymbles, construct the solid that is in the Figure 20. From two such solids, make a
2 × 2 × 5 cuboid. From such cuboids, it is possible to put together a 10 × 10 × 10 cube.

Figure 19 Figure 20
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IMO Team Selection Contest

First Day

1. On a plane, a line l and two circles c1 and c2 of different radii are given such that l

touches both circles at point P . Point M 6= P on l is chosen so that the angle Q1MQ2 is
as large as possible where Q1 and Q2 are the tangency points of the tangent lines drawn
from M to c1 and c2 , respectively, differing from l. Find ∠PMQ1 + ∠PMQ2 .

Answer: π .

Solution. Consider first the case where c1 and c2 are on the same side from l (see Figure
21). Let O1 and O2 be the circumcentres and r1 and r2 the radii of c1 and c2 , respec-
tively. Without loss of generality, assume r1 > r2 . Denote ∠PMQ1 = α1 , ∠PMQ2 = α2

and |PM | = d. As ∠PMO1 =
1

2
∠PMQ1 and ∠PMO2 =

1

2
∠PMQ2 , we see that

∠Q1MQ2 = α1 − α2 is maximal if and only if ∠O1MO2 =
α1

2
− α2

2
is maximal; the

latter holds if and only if tan
(α1

2
− α2

2

)

is maximal because the angle is in the first

quadrant. The formula of tangent of difference gives

tan
(α1

2
− α2

2

)

=
tan

α1

2
− tan

α2

2

1 + tan
α1

2
· tan

α2

2

=

r1

d
− r2

d

1 +
r1

d
· r2

d

.

Representing the result in the form

tan
(α1

2
− α2

2

)

=
r1 − r2

d +
r1r2

d

=
r1 − r2

√
r1r2

(

d√
r1r2

+

√
r1r2

d

) ,

we obtain that the value of the denominator of the last expression is minimal in the case
d =

√
r1r2 . Now

tan
α1

2
=

r1

d
=

√
r1√
r2

, tan
α2

2
=

r2

d
=

√
r2√
r1

,

i.e. tan
α1

2
and tan

α2

2
are reciprocals of each other. Therefore

α1

2
+

α2

2
=

π

2
and

∠PMQ1 + ∠PMQ2 = α1 + α2 = π .

In the other case when c1 and c2 are on the different sides from l (see Figure 22), the
maximal size of the angle Q1MQ2 is π which is the greatest size an angle can have. In
this case, the point M lies on the common tangent to c1 and c2 intersecting l. Then
∠PMQ1 + ∠PMQ2 = ∠Q1MQ2 = π .

2. On the planet Automory, there are infinitely many inhabitants. Every Automorian
loves exactly one Automorian and honours exactly one Automorian. Additionally, the
following can be noticed:
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Q2
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Figure 21

l

P M

Q1

Q2

c1

c2

Figure 22

• each Automorian is loved by some Automorian;

• if Automorian A loves Automorian B , then also all Automorians honouring A

love B ;

• if Automorian A honours Automorian B , then also all Automorians loving A hon-
our B .

Is it correct to claim that every Automorian honours and loves the same Automorian?

Answer: Yes.

Solution. Denote by f(A) the Automorian loved by A and by g(A) the Automorian
honoured by A. The conditions of the problem imply the following:

• for every Automorian A, there exists an Automorian C such that f(C) = A;

• for every Automorian C , f(g(C)) = f(C);

• for every Automorian C , g(f(C)) = g(C).

We will show that f(A) = g(A) for every A. Applying f to both sides of the third
condition, we get

f(g(f(C))) = f(g(C)).

Using the second condition in both sides, we get

f(f(C)) = f(C).

Using the first condition, this implies

f(A) = A

for all A. Using the second condition again, we obtain the desired result:

f(A) = f(g(A)) = g(A).

Thus, every Automorian loves and honours himself.

3. Find all pairs (x, y) of positive integers satisfying the equation

(x + y)x = xy.
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Answer: (2, 6) and (3, 6).

Solution. We have xy = (x + y)x > xx implying y > x. Let y = nx where n > 1 is a
rational number. From the equality given in the problem, we get

(x + nx)x = xnx.

Raise both sides to the power of
1

x
and then divide them by x; we obtain

1 + n = xn−1. (1)

On the right hand side, the exponent n − 1 can be represented as a reduced fraction
p

q
,

therefore the number

xn−1 = x
p

q = q
√

xp

is either natural or irrational. The left hand side of (1) cannot be irrational, thus it is
natural. Hence n is natural. By choice, n > 1.

If n = 2, (1) gives x = 3 implying y = 2x = 6. If n = 3, (1) gives x = 2 implying
y = 3x = 6. Note that (1) implies x > 2, thus 1 + n > 2n−1 . The latter inequality does
not hold in the case n > 4. Hence no more solutions exist.

Second Day

4. Find all pairs (a, b) of real numbers such that the roots of polynomials 6x2−24x−4a

and x3 + ax2 + bx − 8 are all non-negative real numbers.

Answer: (−6, 12).

Solution. Let x1 , x2 be the roots of the first polynomial and x′

1 , x′

2 , x′

3 be the roots of the

other polynomial. Division of the first polynomial by 6 gives x2 − 4x − 2

3
a whose roots

are x1 and x2 , too. By Viète’s formulae,

x1 + x2 = 4, x1x2 = −2

3
a

and

x′

1 + x′

2 + x′

3 = −a, x′

1x
′

2 + x′

2x
′

3 + x′

3x
′

1 = b, x′

1x
′

2x
′

3 = 8.

Now

4 =

(

4

2

)2

=

(

x1 + x2

2

)2

> x1x2 = −2

3
a

and

−2

3
a =

2

3
(x′

1 + x′

2 + x′

3) > 2 3

√

x′

1x
′

2x
′

3 = 4.
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We see that in both inequalities, equality actually holds. Consequently, x1 = x2 ,

x′

1 = x′

2 = x′

3 , and −2

3
a = 4. From the latter, we find a = −6. Thus x′

1x
′

2x
′

3 = 8

leading to x′

1 = x′

2 = x′

3 = 2 which gives b = 12.

On the other hand, taking a = −6, b = 12 gives 6x2 − 24x − 4a = 6(x − 2)2 and
x3 + ax2 + bx − 8 = (x − 2)3 satisfying the conditions of the problem.

5. On a horizontal line, 2005 points are marked, each of which is either white or black.
For every point, one finds the sum of the number of white points on the right of it and
the number of black points on the left of it. Among the 2005 sums, exactly one number
occurs an odd number of times. Find all possible values of this number.

Answer: 1002.

Solution. It is easy to see that the sums computed for a white point V and a black point
M immediately following V on its right are equal. Note also that the sums are equal
also if the two points of different colour lie in the opposite order. If one interchanges
two consecutive points of different colour, only the two equal sums corresponding to
these two points change giving rise to two new equal sums. Hence, for any k, such
transitions preserve parity of the number of occurrences of k among the 2005 sums.

Assume there are n white and 2005 − n black points on the line. By a sequence of
transitions described, collect all white points to the left. Then, going from left to right,
the corresponding sums are

n − 1, n − 2, . . . , 1, 0, 0, 1, . . . , 2003 − n, 2004 − n.

According to the invariant discovered in the first paragraph, exactly one number must
occur an odd number of times also in this sequence. As the middle numbers occur in
pairs, the single number occurring an odd number of times is either the leftmost n − 1
or the rightmost 2004 − n. If the former case takes place, then n − 2 = 2004 − n leading
to n = 1003 and n−1 = 1002. If the other case takes place, then n−1 = 2003−n, giving
n = 1002 and 2004 − n = 1002 just like in the first case.

6. On a plane, line l and a circle having no common points are given. Let AB be the
diameter of the circle being perpendicular to l whereby B is nearer to l than A. Let C

be a point on the circle different from both A and B . Line AC intersects l at point D.
Points B and E , the latter obtained as the tangency point of a line drawn from D to the
circle, lie on the same side from AC . Line EB intersects l at point F ; line FA intersects
the circle second time at point G. Prove that the point symmetric to G with respect to
AB lies on FC .

Solution. See IMO-2004 Shortlist.
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