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Mathematics Contests in Estonia

The Estonian Mathematical Olympiad is held annually in three rounds – at
the school, town/regional and national levels. The best students of each
round (except the final) are invited to participate in the next round. Every
year, about 110 students altogether reach the final round.

In each round of the Olympiad, separate problem sets are given to the stu-
dents of each grade. Students of grade 9 to 12 compete in all rounds, students
of grade 7 to 8 participate at school and regional levels only. Some towns,
regions and schools also organise olympiads for even younger students. The
school round usually takes place in December, the regional round in January
or February and the final round in March or April in Tartu. The problems
for every grade are usually in compliance with the school curriculum of that
grade but, in the final round, also problems requiring additional knowledge
may be given.

The first problem solving contest in Estonia took place already in 1950.
The next one, which was held in 1954, is considered as the first Estonian
Mathematical Olympiad.

Apart from the Olympiad, open contests are held twice a year, usually in
October and in December. In these contests, anybody who has never been
enrolled in a university or other higher education institution is allowed to
participate. The contestants compete in two separate categories: the Juniors
and the Seniors. In the first category, students up to the 10th grade can par-
ticipate; the other category has no restriction. Being successful in the open
contests generally assumes knowledge outside the school curriculum.

According to the results of all competitions during the year, about 20 IMO
team candidates are selected. IMO team selection contest for them is held in
April or May. This contest lasts two days; each day, the contestants have 4.5
hours to solve 3 problems, similarly to the IMO. All participants are given
the same problems. Some problems in our selection contest are at the level of
difficulty of the IMO but somewhat easier problems are usually also included.

The problems of previous competitions are available at the Estonian Math-
ematical Olympiad’s website http://www.math.olympiaadid.ut.ee/eng.

Besides the above-mentioned contests and the quiz “Kangaroo” other re-
gional competitions and matches between schools are held as well.

*

This booklet contains problems that occurred in the open contests, the fi-
nal round of national olympiad and the team selection contest. For the open
contests and the final round, selection has been made to include only prob-
lems that have not been taken from other competitions or problem sources
and seem interesting enough. The team selection contest is presented entirely.
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Selected Problems from Open Contests

OC-1. Find all positive integers n such that 1 + 22 + 33 + 4n is a perfect
square. (Juniors.)

Answer: n = 1.
Solution 1. Let 1 + 22 + 33 + 4n = x2. This implies 32 = x2 − 4n or, equiv-

alently, 25 = (x − 2n)(x + 2n). As the l.h.s. is a power of 2, the factors in the
r.h.s. are of the form x − 2n = 2a and x + 2n = 25−a where a is 0, 1 or 2. Sub-
tracting the first of the two equalities from the second gives 2n+1 = 25−a − 2a.
This leads to an integral n only if a = 2; then n = 1. A check shows that
1 + 22 + 33 + 41 = 62 indeed.

Solution 2. Observe that 1 + 22 + 33 + 4n = 32 + 4n = 25 + 22n = 25 ·
(1 + 22n−5). If n > 3, then 2n − 5 > 1; hence 22n−5 is an even integer and
1 + 22n−5 is therefore odd. Thus in the prime factorization of the number
given in the problem, the exponent of 2 is 5. As this is odd, the number cannot
be a perfect square. If n = 2 or n = 1, then 32 + 4n = 48 or 32 + 4n = 36,
respectively, where only the latter is a perfect square. Consequently, only
n = 1 is possible.

Solution 3. If n = 1, 2, 3, then the given number is 36, 48, 96, respectively,
where only the first is a perfect square. If n > 4, then 2 · 2n + 1 > 2 · 16 + 1 >

32, implying (2n)2
< (2n)2 + 32 < (2n)2 + 2 · 2n + 1 = (2n + 1)2. As the

number under question is equal to (2n)2 + 32, it falls between two consecutive
perfect squares, hence cannot be a perfect square itself.

OC-2. Given a convex quadrangle ABCD with |AD| = |BD| = |CD| and
∠ADB = ∠DCA, ∠CBD = ∠BAC, find the sizes of the angles of the quad-
rangle. (Juniors.)

Answer: 75◦, 120◦, 45◦, and 120◦.

α β

α + β

β

β − α
α

α

A

B

C

D

Fig. 1

Solution 1. Denote ∠ADB = ∠DCA = α and
∠CBD = ∠BAC = β (Fig. 1). In triangle DAC
we have |DA| = |DC| and therefore ∠DAC =
∠DCA = α; analogously in triangles DAB and
DBC, we have ∠DBA = ∠DAB = α + β and
∠DCB = ∠DBC = β, respectively. So ∠BCA =
β − α. From triangle ABC now β + α + β + β +
β − α = 180◦ or, equivalently, 4β = 180◦, giving
β = 45◦. From triangle ADB we get α + β + α +
β + α = 180◦ or, equivalently, 3α = 180◦ − 2β =
90◦ and α = 30◦. Therefore, the sizes of the an-
gles of quadrangle ABCD are ∠DAB = α + β =
75◦, ∠ABC = α + 2β = 120◦, ∠BCD = β = 45◦,
and ∠CDA = 360◦ − 75◦ − 120◦ − 45◦ = 120◦.
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Solution 2. We use the same notation as in the Solution 1. Triangle BCD
is isosceles, hence ∠DCB = ∠DBC = β. As D is the circumcenter of ABC,
we have ∠BDC = 2∠BAC = 2β. The sizes of the angles of triangle BCD are
therefore β, β, and 2β; thus β + β + 2β = 180◦, whence β = 45◦. As ∠BCA =
∠BDA

2 , we have ∠BCD = α
2 + α = β, whence α = 2

3 β = 30◦. Consequently,

the sizes of the angles of quadrangle ABCD are ∠DAB = ∠ABD = 180◦−α
2 =

75◦, ∠ABC = ∠ABD + ∠CBD = 75◦ + 45◦ = 120◦, ∠BCD = β = 45◦, and
∠CDA = ∠CDB + ∠BDA = 90◦ + 30◦ = 120◦.

Remark. The convexity of the quadrangle actually follows from the other
constraints of the problem. Namely, consider the circle with center D, passing
through points A and B, and a point C on it. If A and B were on different sides
from line CD, we would have ∠ADB > ∠BCA > ∠DCA, hence ∠ADB and
∠DCA could not be equal.

OC-3. In the buffet of the kitchen, there are three candy boxes, each con-
taining the same number of candies. Every time when Juku goes into the
kitchen, he takes either three candies from one box or one candy from ev-
ery box. Prove that irrespectively of how Juku takes the candies, he always
retains the possibility to completely clean out all candy boxes. (Juniors.)

Solution. The difference of the numbers of candies in any two boxes can
only be a multiple of 3 because it is 0 in the beginning and, with every move,
it changes by either 0 or 3. Hence, starting from an arbitrary intermediate
state, Juku can clean out the boxes as follows: he takes one candy from each
box as many times as possible, after which one box is empty and the number
of candies in each of the other two is divisible by 3, and then empties the
other boxes by taking three candies from one box every time.

OC-4. Four musketeers together bought a plot of rectangular shape and
paid for it equally. They divided the plot by two cuts into four pieces of
rectangular shape, from which every musketeer got one. It turned out that
one musketeer obtained as much land as the other three in total. Prove that
the price per acre of one musketeer’s piece turned out as large as the sum of
the prices per acre of the other three musketeers’ pieces. (Juniors.)

Solution. Let a and b be the side lengths of the plot. Assume that the
cuts divided the side of length a to parts of length x and a − x where x be-
ing the greater part, and the side of length b to parts of length y and b − y
where y being the greater part. Then the area of the largest piece was xy.
The condition that this area equals the sum of the areas of the other three
pieces can be written as follows:

xy = (a − x)y + x(b − y) + (a − x)(b − y).
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Dividing both sides by x(a − x)y(b − y), one obtains

1

(a − x)(b − y)
=

1

x(b − y)
+

1

(a − x)y
+

1

xy
.

If the price that every musketeer paid for the plot was 1, then the l.h.s. of the
last equality is precisely the price per area unit of the piece with area (a − x) ·
(b − y). Analogously, the r.h.s. equals the sum of the prices per area unit of
the other three pieces. Hence multiplying the sides of this equality by the
number of area units per acre, the claim of the problem follows.

OC-5. Let a be a fixed real number. Find all real numbers b such that, for
every real number x, at least one of the numbers x2 + ax + b and x2 − ax + b
is non-negative. (Juniors.)

Answer: b > 0.
Solution. Note that x2 + ax + b and x2 − ax + b sum up to 2x2 + 2b. If

b > 0, then it is non-negative for arbitrary real number x, implying that at
least one of the numbers added was non-negative. If b < 0, then taking x = 0
turns both summands negative.

Remark. This problem can be solved also in technical ways, by calculating
the negative and non-negative domains of the quadratic polynomials.

OC-6. Call a positive integer n prime-prone if there exist at least three prime
numbers from which we can get n by removing the last digit. Prove that
every two prime-prone positive integers differ from each other by at least 3.
(Juniors.)

Solution. As the prime numbers under consideration have at least two
digits, the last digit can be only 1, 3, 7, or 9. Thus n is prime-prone if and only
if, among numbers 10n + 1, 10n + 3, 10n + 7, and 10n + 9, at least three are
primes.

If n = 3k, then 10n + 3 = 30k + 3 and 10n + 9 = 30k + 9 are divisi-
ble by 3 and hence composite. If n = 3k + 2, then 10n + 1 = 30k + 21 and
10n + 7 = 30k + 27 are divisible by 3 and hence composite again. Conse-
quently, all prime-prone integers are congruent to 1, and hence to each other,
modulo 3. Thus they differ by a multiple of 3, i.e., by at least 3.

OC-7. Does there exist a prime number p such that both p3 + 2008 and p3 +
2010 are primes as well? (Seniors.)

Answer: no.
Solution. Let p be any prime number. If p is not divisible by 7, then p3

is congruent to either 1 or −1 modulo 7. Since 2008 ≡ −1 (mod 7) and
2010 ≡ 1 (mod 7), either of the numbers p3 + 2008 and p3 + 2010 is divisible
by 7 and hence composite. If p is divisible by 7, then p = 7 and p3 + 2010 =
73 + 2010 = 2353 = 13 · 181 is composite, too.
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OC-8. In a regular n-gon, either 0 or 1 is written at each vertex. Using
non-intersecting diagonals, Juku divides this polygon into triangles. Then
he writes into each triangle the sum of the numbers at its vertices. Prove that
Juku can choose the diagonals in such a way that the maximal and minimal
number written into the triangles differ by at most 1. (Seniors.)

Solution. If all numbers written at the vertices of the polygon are equal,
then the claim holds trivially. Hence assume that there are both zeros and
ones among the numbers at the vertices. We prove by induction that, for
every convex polygon, the partition into triangles can be chosen in such a
way that Juku writes either 1 or 2 to each triangle.

If n = 3, then this claim holds since the sum of the numbers at the vertices
of a triangle can be neither 0 nor 3. If n = 4 (Fig. 2), then draw the diagonal
that connects the vertices where 0 and 1 are written, respectively, or, if such
a diagonal does not exist, then an arbitrary diagonal. In both cases, only
sums 1 and 2 can arise. If n > 5, then choose two consecutive vertices with
different labels and a third vertex P that is not neighbour to either of them
(Fig. 3). Irrespective of whether the label of P is 0 or 1, we can draw the
diagonal from it to one of the two consecutive vertices chosen before so that
the labels of its endpoints are different. Now the polygon is divided into two
convex polygons with smaller number of vertices so that both 0 and 1 occur
among their vertex labels. By the induction hypothesis, both polygons can be
partitioned into triangles with sum of labels of vertices either 1 or 2.

0 ⋆

1⋆

0 1

01

Fig. 2

0 1

P

Fig. 3

OC-9. Circle c passes through vertices A and B of an isosceles triangle ABC,
whereby line AC is tangent to it. Prove that circle c passes through the cir-
cumcenter or the incenter or the orthocenter of triangle ABC. (Seniors.)

Solution. Consider three cases |AB| = |AC|, |BC| = |BA|, and |CA| = |CB|.
1. We show that if |AB| = |AC| (Fig. 4), then circle c passes through the

circumcenter of ABC. Let O be the point at the same side from AB
as C that is the intersection of the perpendicular bisector of side AB
and circle c. Then ∠OAB = ∠OBA and, by inscribed angles theorem,
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∠OBA = ∠OAC. Hence O lies on the bisector of angle CAB. Since
|AB| = |AC|, this angle bisector is also the perpendicular bisector of
side BC. Consequently, O is the intersection point of the perpendicular
bisectors of the sides of triangle ABC.

2. For the case |BC| = |BA| (Fig. 5), we show that circle c passes through
the orthocenter of triangle ABC. Let E be the foot of the altitude of
triangle ABC drawn from B and let H be the second intersection point
of this altitude with circle c (in the special case with tangency and no
intersection, take H = B). By the inscribed angles theorem, ∠EBA =
∠EAH. Thus ∠ACB + ∠CAH = ∠CAB + ∠EBA = 90◦ whence AH ⊥
BC. Consequently, H is the orthocenter.

3. Finally, we show that if |CA| = |CB| (Fig. 6), then circle c passes through
the incenter of triangle ABC. Let I be the intersection point of the bi-
sector of angle CAB with circle c. By the inscribed angles theorem,
∠CAI = ∠IBA. Hence ∠BAI = ∠IBA whence I lies on the perpen-
dicular bisector of side AB. As |CA| = |CB|, this perpendicular bisector
is also the bisector of angle ACB. Consequently, I is the intersection
point of the angle bisectors.

OC-10. Let n > 2. Positive integers a1, a2, . . . , an whose sum is even and
which satisfy ai 6 i for every i = 1, 2, . . . , n, are given. Prove that it is possible
to choose signs in the expression a1 ± a2 ± . . .± an in such a way that its value
becomes 0. (Seniors.)

Solution 1. Prove the claim by induction on n. If n = 2, then the only way
to choose integers that satisfy the conditions of the problem is a1 = 1 and
a2 = 1. In this case, a1 − a2 = 0. Assume now that the claim holds whenever
2 6 n 6 k and show that it holds also for n = k + 1. Consider two cases.

1. If ak+1 = ak, then a1 + a2 + . . . + ak−1 is even. As this case is possible
only for k > 2, the induction hypothesis is applicable for n = k − 1.
Thus it is possible to choose signs in the expression a1 ± a2 ± . . . ± ak−1
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in such a way that it evaluates to 0. Adding ak − ak+1 to it, the desired
expression for n = k + 1 is obtained.

2. If ak 6= ak+1, then consider integers a1, . . . , ak−1, |ak − ak+1|. As |ak −
ak+1| and ak + ak+1 have the same parity, the sum of these k numbers is
even. Also note that 1 6 |ak − ak+1| 6 k. Thus these numbers satisfy the
conditions of the problem, so it is possible to choose signs in the expres-
sion a1 ± a2 ± . . . ± ak−1 ± |ak − ak+1| in such a way that it evaluates to
0. As either |ak − ak+1| = ak − ak+1 or |ak − ak+1| = ak+1 − ak, this also
leads to a corresponding expression for numbers a1, a2, . . . , ak, ak+1.

Solution 2. Prove by induction on i that, for each i and s such that 1 ≤ i ≤ n
and 1 ≤ s ≤ a1 + . . . + ai, it is possible to choose some of the numbers a1, . . . ,
ai that sum up to s. If i = 1, then this claim holds since a1 = 1. Assume that
the claim holds for i = k − 1 and consider the case i = k. Let S = a1 + . . . + ak

and S′ = a1 + . . . + ak−1. If 1 ≤ s ≤ S′, then the desired statement holds by the
induction hypothesis. If S′

< s ≤ S, then 0 ≤ s − ak ≤ S′ (the first inequality
holds because s − ak ≥ s − S′ − 1 > 0, implied by ak ≤ k and S′ ≥ k − 1;
the second inequality follows from S = S′ + ak). Therefore, to get the sum s,
we can choose the number ak, and if s − ak > 0, then add to it those numbers
among a1, . . . , ak−1 whose sum is s − ak, using the induction hypothesis.

Let now a1 + a2 + . . . + an = 2T. Choose the numbers among a1, a2, . . . ,
an that sum up to T. This divides all the numbers into two groups with equal
sum. It remains to write minuses in front of every term of the group that does
not contain a1.

Solution 3. Start choosing signs from right to left. Denote S1 = an and
define Sk+1, k = 1, . . . , n − 1, as follows: if Sk > 0, then Sk+1 = Sk − an−k,
otherwise Sk+1 = Sk + an−k. We show that then always |Sk| 6 n − k + 1. This
holds if k = 1. Assume therefore that it holds for k = m and prove it for
k = m + 1. If Sm > 0, then Sm+1 = Sm − an−m 6 (n − m + 1) − 1 = n − m
and Sm+1 = Sm − an−m > 0− (n − m), hence |Sm+1| 6 n − m. If Sm < 0, then
Sm+1 = Sm + an−m < 0 + n − m and Sm+1 = Sm + an−m > −(n − m + 1) +
1 = −(n − m), hence |Sm+1| 6 n − m again.

Now |Sn| 6 1 since |Sk| 6 n − k + 1 for every k = 1, . . . , n. Thus Sn = 0
as the sum of all terms is even. If in this formal sum, the term a1 has minus
sign, turn all signs to the opposite one.

Remark. Solution 2 shows that the assumption ak 6 k for all k = 1, . . . , n
could be replaced with the more general assumption ak 6 1 + a1 + . . . + ak−1

for all k = 1, . . . , n.
One can also note that the lemma proved at the beginning of Solution 2

does not need the assumption that the sum of all numbers is even.
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OC-11. The diagonals of trapezoid ABCD with bases AB and CD meet at
P. Prove the inequality SPAB + SPCD > SPBC + SPDA, where SXYZ denotes
the area of triangle XYZ. (Seniors.)

Solution 1. Let a = |AB| and b = |CD| and let ha and hb be the altitudes of
triangles PAB and PCD drawn from P (Fig. 7). Denote S1 = SPAB + SPCD and

S2 = SPBC + SPDA. Then S1 = 1
2 (aha + bhb) and S1 + S2 = 1

2 (a + b)(ha + hb),

whence S2 = 1
2 (ahb + bha). Since triangles PAB and PCD are similar, a > b

implies ha > hb and also a < b implies ha < hb (a 6= b because a and b are the
lengths of the bases of the trapezoid). Hence

S1 − S2 =
1

2
(aha + bhb − ahb − bha) =

1

2
(a − b)(ha − hb) > 0,

i.e., S1 > S2.

A B

CD

MN
P

a

b

ha

hb

Fig. 7

Solution 2. Let M and N be the intersection
points of the arms BC and DA of the trape-
zoid with the line being parallel to the bases
of the trapezoid and passing through point P.
Let l be the length of MN, let d be the length
of the midline of the trapezoid, and let h and
S be the height and the area of the trapezoid,
respectively. Let S′ = SPBC + SPDA. Then

S = dh and S′ = 1
2 lh whence it suffices to

show that l < d.
W.l.o.g., assume |AB| < |CD|. Comparing the heights of similar triangles

PAB and PCD shows that MN is closer to base AB than to base CD. Thus
MN is situated between the midline and the shorter base AB. Consequently,
MN is shorter than the midline.

Solution 3. Let a = |AB| and b = |CD|. Let h and S be the height and
the area of the trapezoid, respectively, and let ha and hb be the heights corre-
sponding to vertex P of triangles PAB and PCD, respectively. Similar trian-
gles PAB and PCD imply ha : hb = a : b. As ha + hb = h we get

ha =
a

a + b
· h, hb =

b

a + b
· h.

Now

SPAB + SPCD =
1

2
(aha + bhb) =

1

2
· a2 + b2

a + b
· h.

It suffices to show that SPAB + SPCD >
S
2 or, equivalently,

1

2
· a2 + b2

a + b
· h >

1

2
· a + b

2
· h,

or, equivalently, 2(a2 + b2) > (a + b)2. But the last inequality is equivalent to
(a − b)2

> 0 (a 6= b since a and b are the lengths of the bases of the trapezoid).
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OC-12. Call pure any positive integer n that does not occur in any integer
sequence c0, c1, c2, . . . , where 0 < c0 < n and

ci =

{

1
2 ci−1 if ci−1 is even,

3ci−1 − 1 if ci−1 is odd,

for every i > 1. (For instance, 10 is not pure since it occurs in the sequence 5,
14, 7, 20, 10, . . . )

a) Is every positive multiple of 3 pure?

b) Prove that if an integer n > 1 is pure but not divisible by 3, then n + 1
is divisible by 6.

(Seniors.)
Answer: a) yes.

Solution. a) Note that 3ci−1 − 1 is never divisible by 3 and if 1
2 ci−1 is di-

visible by 3, then also ci−1 is divisible by 3. Thus, if some term ck = n is
divisible by 3, then, up to it, only dividing by 2 is used to build the terms

(i.e., ci = 1
2 ci−1 for every i such that 1 6 i 6 k) and, consequently, c0 > c1 >

. . . > ck = n. But this contradicts the condition c0 < n. Hence every positive
multiple of 3 is pure.

b) If n is not divisible by 3, then n = 3k + 1 or n = 6k + 2 or n = 6k + 5.
If n = 3k + 1, then taking c0 = 2k + 1 gives c1 = 6k + 2 and c2 = 3k + 1 = n.
Thereby k > 0 since n > 1, therefore c0 < n. Hence none of such numbers n
is pure. If n = 6k + 2, then taking c0 = 2k + 1 gives c1 = 6k + 2 = n, whereby
c0 < n. Hence also none of such numbers n is pure. Hence, among the
positive integers n > 1 not divisible by 3, only those of the form n = 6k + 5
can be pure.

Remark. Not every integer of the form n = 6k + 5 is pure. For example,
23 = 6 · 3 + 5 occurs in the sequence 21, 62, 31, 92, 46, 23, . . .

OC-13. Let a and b the lengths of the legs of a given right triangle. Prove
that angle ϕ, where 0 < ϕ < 90◦, is an acute angle of this triangle if and only
if (a cos ϕ + b sin ϕ)(a sin ϕ + b cos ϕ) = 2ab. (Seniors.)

Solution 1. The equality given in the problem is equivalent to

(a2 + b2) sin ϕ cos ϕ + ab(sin2 ϕ + cos2 ϕ) = 2ab

and hence also to
(a2 + b2) sin ϕ cos ϕ = ab. (1)

Let α and β be the angles opposite to legs with length a and b, respectively.

Then sin α = a/
√

a2 + b2, sin β = cos α = b/
√

a2 + b2, implying

(a2 + b2) sin α cos α = ab.

Comparing this to (1) shows the equivalence of the equality of the problem
and the equality sin ϕ cos ϕ = sin α cos α, i.e., equality sin 2ϕ = sin 2α. As
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0 < α, β < 90◦, this implies 2ϕ = 2α or 2ϕ = 180◦ − 2α, whence ϕ = α or
ϕ = 90◦ − α = β. Hence, ϕ satisfies the equality if and only if it equals one of
the acute angles of the right triangle.

A B

C

C′

ab

a′b′

c

h

h′

ϕ

Fig. 8

Solution 2. Let ABC be the given trian-
gle with right angle at vertex C. Let c be the
length of its hypothenuse and h be the height
corresponding to the hypothenuse. Let C′ be
a point on the circumcircle of ABC such that
one acute angle of triangle ABC′ is ϕ (Fig. 8).
Let a′ and b′ be the lengths of the legs of tri-
angle ABC′ and h′ be the height of the trian-
gle ABC′ corresponding to its hypothenuse.
Then (a2 + b2) sin ϕ cos ϕ = c2 sin ϕ cos ϕ =
(c sin ϕ)(c cos ϕ) = a′b′ = ch′. Since the equal-
ity in the problem is equivalent to the equal-
ity (1) from the Solution 1, it is also equiva-
lent to ch′ = ab. But ab = ch, hence it is also
equivalent to h = h′. This condition holds if and only if ABC ∼ ABC′ or
ABC ∼ BAC′, i.e., ϕ equals one of the acute angles of triangle ABC.

Selected Problems from the Final Round

of National Olympiad

FR-1. Let a, b and c be positive integers such that ab is divisible by 2c, bc is
divisible by 3a and ca is divisible by 5b. Find the least possible value of abc.
(Grade 9.)

Answer: 900.
Solution. Since ab is divisible by 2c and ca is divisible by 5b, ab · ca must be

divisible by 2c · 5b, hence a2 is divisible by 2 · 5. Therefore a2 is divisible by 2
and 5, hence a is divisible by 2 and 5. Similarly b is divisible by 2 and 3, and c
is divisible by 3 and 5. Consequently abc is divisible by 2 · 5 · 2 · 3 · 3 · 5 = 900.
On the other hand, a = 10, b = 6 and c = 15 satisfy the conditions and
abc = 900.

FR-2. Prove the inequality

2010 <
22 + 1

22 − 1
+

32 + 1

32 − 1
+ . . . +

20102 + 1

20102 − 1
< 2010

1

2
.

(Grade 9.)

Solution. Since
n2 + 1

(n − 1)(n + 1)
= 1 +

1

n − 1
− 1

n + 1
, the given sum can

be rewritten in the form 1 +
1

1
− 1

3
+ 1 +

1

2
− 1

4
+ . . . + 1 +

1

2009
− 1

2011
=
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2010 +
1

2
− 1

2010
− 1

2011
. Because 0 <

1

2
− 1

2010
− 1

2011
<

1

2
, the inequality

is proved.

FR-3. Juku drew a regular hexagon and chose three triangles with different
areas whose vertices were among the vertices of the hexagon. Prove that the
sum of the areas of the triangles is equal to the area of the hexagon. (Grade 9.)

Solution. Any triangle whose vertices are among the vertices of a regular
hexagon is one of the following:

• a triangle ∆1 whose vertices are three consecutive vertices of the hexa-
gon;

• a triangle ∆2 whose two vertices are adjacent vertices of the hexagon
and the third one is adjacent to none of the first two;

• a triangle ∆3 where any two vertices are not adjacent vertices of the
hexagon.

Since the areas of the chosen triangles are different, the triangles must be
equal to the triangles ∆1, ∆2, ∆3. The hexagon can be divided into four parts
(Fig. 9): the triangle ∆3 surrounded by three triangles ∆1. The area of the tri-
angle ∆2 (marked by a dotted line in Fig. 9) is twice the area of the triangle ∆1

beacuse they have the same base but the height of ∆2 is twice the height of ∆1.

FR-4. Points A′, B′ and C′ are chosen correspondingly on the sides AB, BC,

and CA of an equilateral triangle ABC so that
|A′B|
|AB| = |B′C|

|BC| = |C′A|
|CA| = k. Find

all positive real numbers k for which the area of the triangle A′B′C′ is exactly
half of the area of the triangle ABC. (Grade 10.)

Answer: k = 1
2 ±

√
3

6 .
Solution. Let α be the angle at the vertex A (Fig. 10). The area of the triangle

AA′C′ is SAA′C′ = 1
2 · |AA′| · |AC′| · sin α = 1

2 · (1 − k)|AB| · k|AC| · sin α =
(1 − k)k SABC. Similarly SBB′A′ = (1 − k)k SABC and SCC′B′ = (1 − k)k SABC.
Hence the triangles AA′C′, BB′A′ and CC′B′ are of equal area. Therefore

Fig. 9

A

B C

A′

B′

C′α

Fig. 10
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the area of the triangle A′B′C′ is half of the area of the triangle ABC iff the
area of the triangle AA′C′ is one sixth of the area of the triangle ABC, i.e.

(1 − k)k = 1
6 . The solutions of k2 − k + 1

6 = 0 are k1,2 = 1
2 ±

√
3

6 , both of them
are positive.

Remark. As seen from the solution, the result actually holds for an arbi-
trary triangle.

FR-5. Three players A, B and C play the following game. At the beginning
of the game, each player has a sheet of paper with the name of the player
written on it. Player A chooses one of the other players and replaces the name
on this player’s sheet with the name on his own sheet. Then player B makes
a similar move, then player C and after that the turn to move goes to player
A again. The game ends when all the sheets have the same name written on
them and the winner is the player whose name it is. Does any of the players
have a winning strategy (i.e., a strategy that allows a player to win no matter
what his opponents play)? (Grade 10.)

Answer: no.
Solution 1. Player B does not have a winning strategy, since on the first

move player A can write the name A on his sheet, after that the name B is not
on any of the sheets. Similarly player C does not have a winning strategy.

To prove that even player A does not have a winning strategy, we show
that players B and C have a joint strategy which guarantees that among the
names written on the sheets there are at least two different names. Namely,
if player A on his move writes a name on the sheet of player B, then B writes
a name on the sheet of player A, otherwise on the sheet of player C. Player C
always writes a name on the sheet of player B.

In the beginning both players B and C have names different from the name
on the sheet of player A. Hence A cannot win in one move. Independent of
which name A changes on his move, after B moves, the name on the sheet of
C differs from the name on the sheet of A, and after C moves, both B and C
have names on their sheets different from the one on the sheet of A, as in the
beginning. So the cycle repeats.

Solution 2. Denote the players starting from any player in the order of their
turns by X, Y, and Z. Show that the players Y and Z can together always keep
X from winning. Indeed, X can win only on his move because Y and Z can
always play so that their move does not result immediately in X winning. X
can win on his turn only if before his move he and somebody else have his
name on their sheets. The player Z cannot prevent this situation only if the
same situation occurred already before his move and his sheet has the name
of X on it. But after Y moves, then either X or Z has the same name on their
sheets as Y has, and so Y can always prevent both X and Z having the same
name on their sheets. Thus none of the three players has a winning strategy.
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FR-6. A regular 2010-gon is divided into pieces of triangular shape. Find
the least possible number of pieces. (Grade 10.)

Answer: 2008.
Solution. All the interior angles of the 2010-gon can be built from the in-

ner angles of the triangular pieces. As the sum of the inner angles of the
2010-gon is 2008 · 180◦ and that of every triangle is 180◦, there must be at
least 2008 triangles. On the other hand, each convex 2010-gon can be divided
into exactly 2008 triangles by choosing one vertex and cutting the figure into
pieces along the diagonals that start from this vertex.

FR-7. Let x, y and z be positive integers satisfying gcd(x, y, z) = 1. Prove

that if (y2 − x2) − (z2 − y2) = ((y − x) − (z − y))2, then x and z are perfect
squares. (Grade 11.)

Solution. Remove the parentheses, collect the terms and divide both sides
by 2 to get x2 + y2 + z2 − 2xy − 2yz + xz = 0. This equality can be written
as (x − y + z)2 = xz. Hence xz is a square of an integer. If x and z have a
common divisor d, then xz is divisible by d2, and by the previous equality
(x − y + z)2 is divisible by d2, therefore x − y + z is divisible by d. Since x and
z are divisible by d, y must be divisible by d, hence d = 1, i.e. x and z do not
have common divisors. Since xz is a square of an integer, it follows that both
x and z are squares of integers.

FR-8. Find all pairs of integers (m, n) such that for all positive real numbers
x and y the inequality xm + yn > xnym holds. (Grade 11.)

Answer: (0, 0).
Solution. If m = 0, then the inequality is 1 + yn > xn. This holds for all

positive real numbers x and y iff n = 0. Hence (0, 0) is a solution. Let now
both m and n be different from zero. If the pair (m, n) satisfies the condi-

tion, then substituting x and y by 1
x and 1

y we see that the pair (−m,−n) also

satisfies the condition. Hence we can assume without loss of generality that
m > n and m > 0. If m > n, then by taking x = 1 we get 1 + yn > ym, which
does not hold for y large enough. Hence m = n. By taking x = y = 4 we get
2 · 4m > 42m which does not hold for any positive integer m. Therefore there
are no more suitable pairs.

FR-9. Let D be the midpoint of side BC of triangle ABC. Prove that the
intersection point of medians of triangle ABD and that of triangle ACD are
equidistant from line AD. (Grade 11.)

Solution. Triangles ABD and ACD have equal area since |BD| = |CD| and
the altitudes drawn from A coincide (Fig. 11). As these triangles have a com-
mon side AD, also the altitudes drawn from vertices B and C, respectively,
must be equal. Thus B and C are equidistant from line AD. Since the point
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A

B C
D

M

N

Fig. 11

of intersection of medians cuts 1
3 part of every median, the distance of the

point of intersection of medians of ABD from line AD is thrice shorter than
the distance of point B from line AD. An analogous relation holds also for
triangle ACD. Hence the claim follows.

FR-10. A unit L-shape consists of three unit squares as shown in
the picture. Prove that for any positive integer k it is possible to cut
a similar L-shape with k times larger side lengths into unit L-shapes.
(Grade 11.)

Solution. Let the L-shape be placed so that the two longer sides meet at
the top left corner. Starting from the top left we place on it k unit L-shapes
diagonally with the same orientation as the large L-shape (Fig. 12). The rest
consists of two equal staircase-like parts; it is enough to show that one of
them, e.g. the lower part, can be covered. The staircase has k stairs, the lowest
one at the height k − 1 and the highest at the height 2k − 2.

In case k = 1 the staircase is empty, in case k = 2 it can be covered with
one unit L-shape. Assume that the claim holds for the staircase with k stairs
and consider the staircase with k + 2 stairs. Separate a strip of width 2 from
the left and bottom. The rest can be covered by the induction assumption.
The topmost part of the strip is covered with one unit L-shape. Now we have

Fig. 12 Fig. 13 Fig. 14 Fig. 15
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to cover the rest of the strip whose lower and left sides have correspondingly
the lengths k + 2 and 2k.

• If k is divisible by 3, then cut the figure into two strips of sizes 2 × 2k
and k× 2 and cover both of them with 2× 3 rectangles consisting of two
unit L-shapes (Fig. 13) and we are done.

• If k ≡ 1 (mod 3), then cut the figure into two strips of sizes 2× (2k − 2)
and (k + 2) × 2 and cover both of them with 2 × 3 rectangles (Fig. 14).
This is possible because 2k − 2 and k + 2 are divisible by 3.

• If k ≡ 2 (mod 3), then cut the figure into two strips of sizes 2× (2k − 4)
and (k − 2) × 2, and a corner part, which is a L-shape with k = 2. Both
strips can be covered by 2 × 3 rectangles since 2k − 4 and k − 2 are di-
visible by 3; the corner part can be covered by induction basis (Fig. 15).

FR-11. A ball bearing consists of two cylinders with the same axis and n
equal balls between them. The centers of all the balls are on the same plane
perpendicular to the axis of the cylinders and each ball touches both cylinders
and two adjacent balls. Let r be the radius of the balls and let R be the radius
of the outer cylinder. Prove that r

R <
π

n+π . (Grade 11.)
Solution 1. Consider the regular n-gon with vertices at the centers of the

balls (Fig. 16). Its edges are of length 2r and its perimeter is n · 2r. The radius
of the circumcircle of the n-gon is R − r and the length of the circumcircle is
2π(R − r). Since a chord of a circle is always shorter than the corresponding
arc of the circle, we have n · 2r < 2π(R − r) or nr + πr < πR, which implies
r
R <

π
n+π .

Solution 2. Consider the isosceles triangle with vertices at the centers of
two adjacent balls and at the closest point to them on the common axis of the
cylinders (Fig. 17). The two equal sides of the triangle are of length R − r, the
base is of length 2r and the vertex angle is 2π

n . The altitude drawn onto the
base divides the triangle into two equal right triangles with the hypotenuse
R − r, one of the legs r and the opposite angle π

n . Hence r
R−r = sin π

n <
π
n ,

whence nr < πR − πr, which implies r
R <

π
n+π .

Fig. 16 Fig. 17
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FR-12. The sequence (an) is defined by a1 = 1 and an = n · (a1 + . . . + an−1)
for all n > 1. Find all indices n for which an is divisible by 1 · 2 · . . . · n.
(Grade 12.)

Answer: 1 and all positive even numbers.
Solution. For each n > 2 denote Sn = a1 + . . . + an−1. Then an = Sn · n and

for all n > 2 we have Sn = Sn−1 + an−1 = Sn−1 + Sn−1 · (n − 1) = Sn−1 · n.
Hence Sn = Sn−1 · n = Sn−2 · (n − 1)n = . . . = S2 · 3 · . . . · n = n!

2 because

S2 = 1 = 1·2
2 . Consequently an = Sn · n = n! · n

2 for all n > 2. Therefore, for
n > 2, an is divisible by n! iff n is even, and n = 1 also satisfies the condition.

FR-13. The lengths of the sides of a quadrilateral are a, b, c, d and its area
is S. Prove that a2 + b2 + c2 + d2 > 4S. For which quadrilaterals does the
equality hold? (Grade 12.)

Answer. The equality holds only for squares.
Solution. Without loss of generality we can assume that a, b, c and d are

the lengths of consecutive sides of the quadrilateral. A diagonal divides the
quadrilateral into two triangles. From one partition we get the inequality
ab
2 + cd

2 > S, whence ab + cd > 2S, and from the other partition bc
2 + da

2 > S,
whence bc + da > 2S. Therefore ab + bc + cd + da > 4S.

On the other hand, by adding the inequalities a2 + b2 > 2ab, b2 + c2 > 2bc,
c2 + d2 > 2cd, and d2 + a2 > 2da, and dividing by 2 we get a2 + b2 + c2 + d2 >

ab + bc + cd + da, which implies the required inequality.
The equality holds iff all the inequalities used are, in fact, equalities. In

the first inequality the equality holds iff all the angles are right angles. In the
second step the equalities hold iff all sides are of equal length.

FR-14. In a coordinate city there are n > 3 tramlines parallel to the x-axis
such that each line begins from x-coordinate 0 and ends at x-coordinate n.
Exactly one tram of length 1 is moving on each line: on the first line with
speed 1, on the second line with speed 2 etc, until on the last line with the
speed n. When a tram reaches the end of its line it instantly starts moving
back without turning around. In the morning all trams start moving at the
same time from the starting position where the x-coordinate of the back end
of the tram is 0. Prove that the trams’ projections onto the x-axis never cover
the whole interval from 0 to n. (Grade 12.)

Solution. The projections of the trams can cover the whole interval only
when one projection covers [0, 1], another [1, 2] etc. until [n − 1, n]. Consider
the moments when the projection of the slowest tram covers one of these
intervals. When the slowest tram moves by 1 unit, then the fastest and the
third fastest trams move correspondingly by n and n− 2 units. Together these
two trams move by 2n − 2 units which is exactly one to and fro cycle.

Denote the integer positions of the trams on the round trip by numbers 0
to 2n − 3, i.e the starting position is 0 and each next one until returning to the
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starting point is greater by one. Call these numbers the position characteris-
tics. If the sum of the position characteristics of two trams is 2n− 2, then their
projections cover the same interval because one of them has moved the same
amount from the starting point as the other one still has to go to reach it. If
the sum of the position characteristics is 0, then they both are in the starting
positions, so they again cover the same interval. Hence, when the sum of the
position characteristics is divisible by 2n − 2, the projections cover the same
interval.

At the beginning the sum of the position characteristics of the fastest and
the third fastest tram is 0 and each time they together move by 2n− 2 units the
sum of their position characteristics stays divisible by 2n − 2. Consequently,
when the projection of the slowest tram covers an interval with integer end-
points, the projections of these two trams cover the same interval, hence at
least one of the intervals is not covered.

FR-15. Find the minimal distance between two points, one of which is on
the graph of function y = ex and the other on the graph of function y = ln x.
(Grade 12.)

Answer:
√

2.
Solution. The graphs of functions y = ex and y = ln x are symmetrical

w.r.t. line y = x (Fig. 18). Hence the distance between points on these graphs
is minimal iff both points are at minimal distance from line y = x. The dis-
tance between the graph of the function y = ex and the graph of the function
y = x is minimal at the point where the tangent is parallel to y = x. Then,
y′ = 1 for the function y = ex, whence ex = 1, giving x = 0 and y = 1. The

minimal distance is therefore between points (0, 1) and (1, 0) and it is
√

2.

1

1

y = ex

y = ln x

y = x

Fig. 18
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IMO Team Selection Contest

First day

TS-1. For arbitrary positive integers a, b, denote a ⊖ b =
a − b

gcd(a, b)
.

Let n be a positive integer. Prove that the following conditions are equiv-
alent:

(i) gcd(n, n ⊖ m) = 1 for every positive integer m < n;

(ii) n = pk where p is a prime number and k is a non-negative integer.

Solution. Note at first that da ⊖ db = a ⊖ b for all positive integers a, b, and
d. Indeed,

da ⊖ db =
da − db

gcd(da, db)
=

d · (a − b)

d · gcd(a, b)
=

a − b

gcd(a, b)
= a ⊖ b.

Show now that if n is a prime power and m < n, then n ⊖ m is relatively
prime to n. Indeed, let n = pk where p is a prime number, and let m = pis
where gcd(p, s) = 1. Then m < n implies i < k. Now

n ⊖ m = pk−i ⊖ s =
pk−i − s

gcd(pk−i, s)
= pk−i − s

because gcd(pk−i, s) = 1 by the choice of s. Also, for the same reason,
gcd(p, pk−i − s) = 1, hence gcd(n, n ⊖ m) = gcd(pk, pk−i − s) = 1.

It remains to show that if n is not a prime power, then there exists a posi-
tive integer m such that m < n and the integers n ⊖ m and n share a common
prime factor. Since n is not a prime power, it has at least two different prime
factors. Let p and q be some prime factors of n, whereby p < q. Let n = pkt
where gcd(p, t) = 1. Take m = n − pk+1. As n is divisible by both pk and
q which are relatively prime, it is also divisible by their product pkq. Conse-
quently, pk+1

< pkq 6 n, i.e., 0 < m < n. Now

n ⊖ m = n ⊖ (n − pk+1) = t ⊖ (t − p) =
t − (t − p)

gcd(t, t − p)
=

p

gcd(t, p)
= p

since gcd(t, p) = 1. We see that n ⊖ m and n have a common prime factor p.

TS-2. Let n be a positive integer. Find the largest integer N for which there
exists a set of n weights such that it is possible to determine the mass of all
bodies with masses of 1, 2, . . . , N using a balance scale (i.e. to determine
whether a body with unknown mass has a mass 1, 2, . . . , N, and which
namely).

Answer: N = 3n−1
2 .

Solution. The possibility to determine mass m means the possibility to
place the weights on the two scalepans so that the difference of total masses
on the two scalepans is exactly m.
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Every weight can be placed on either of the two pans or on neither of
the pans. For n weights this makes 3n different placements. Note that the
placement where none of the weights is on the scales does not determine
any mass. Also, for each placement there is a symmetric placement with
all the weights on the two pans swapped, which determines the same mass.

Therefore with n weights it is possible to determine at most 3n−1
2 different

masses.
We show by induction that it is possible to determine all masses from 1

to 3n−1
2 using n weights with masses 1, 3, . . . , 3n−1. For n = 1 it is obvious.

Assume that the claim holds for n = k. By the induction assumption we

can determine all masses from 1 to 3k−1
2 by weights 1, 3, . . . , 3k−1. Using the

weight with mass 3k, we can determine the mass 3k, and using it together

with the other weights also the masses 3k + 1, . . . , 3k + 3k−1
2 and 3k − 1, . . . ,

3k − 3k−1
2 . Since 3k − 3k−1

2 = 3k−1
2 + 1 and 3k + 3k−1

2 = 3k+1−1
2 , the claim is

also true for n = k + 1.

TS-3. Let the angles of a triangle be α, β, and γ, the perimeter 2p and the
radius of the circumcircle R. Prove the inequality

cot2 α + cot2 β + cot2 γ > 3

(

9R2

p2
− 1

)

.

When is the equality achieved?
Answer: the equality holds for equilateral triangles.
Solution. Let the opposite sides of the angles α, β, and γ be correspond-

ingly a, b, and c. Since cot2 α = 1/ sin2 α − 1 and from the law of sines
1/ sin α = 2R/a, we have cot2 α = 4R2/a2 − 1; similarly cot2 β = 4R2/b2 − 1
and cot2 γ = 4R2/c2 − 1. The inequality can therefore be written as

4R2 ·
(

1

a2
+

1

b2
+

1

c2

)

− 3 > 3 ·
(

4 · 9R2

(a + b + c)2
− 1

)

,

or
1

a2
+

1

b2
+

1

c2
>

27

(a + b + c)2
.

Dividing both sides by 3 and taking the square root gives
√

1

3
·
(

1

a2
+

1

b2
+

1

c2

)

>
3

a + b + c
.

The left side is the quadratic mean of 1
a , 1

b , 1
c and the right side is the harmonic

mean of the same numbers, hence the inequality holds.
The equality holds iff a = b = c.
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Second day

TS-4. In an acute triangle ABC the angle C is greater than the angle A. Let
AE be a diameter of the circumcircle of the triangle. Let the intersection point
of the ray AC and the tangent of the circumcircle through the vertex B be K.
The perpendicular to AE through K intersects the circumcircle of the triangle
BCK for the second time at point D. Prove that CE bisects the angle BCD.

A

B

C

D

E

K

L

Fig. 19

Solution. Since AE is a diam-
eter of the circumcircle of the tri-
angle ABC, ∠ACE = ∠ECK =
90◦. So it suffices to show that
∠ACB = ∠DCK (Fig. 19). Let
L be the point of intersection of
lines AE and DK. Then ∠BAC =
∠CBK = ∠CDK by the inscribed
angles theorem. Also ∠ABC =
∠AEC = ∠CKD where the latter
equality follows from the simi-
larity of the right triangles ACE
and ALK. Hence the two triangles ABC and DKC are similar, and therefore
∠ACB = ∠DCK.

Remark. This problem was proposed to the Baltic Way competition in 2008
(not by Estonia) but was not selected.

TS-5. Let P(x, y) be a non-constant homogeneous polynomial with real co-
efficients such that P(sin t, cos t) = 1 for every real number t. Prove that there
exists a positive integer k such that P(x, y) ≡ (x2 + y2)k.

Solution 1. Let n be the degree of the polynomial P, i.e.,

P(x, y) = anxn + an−1xn−1y + . . . + a1xyn−1 + a0yn,

where n > 0. Note that n must be even because otherwise the condition
P(sin t, cos t) = 1 for t = 0 would imply a0 = 1 while the same condition for
t = π would imply a0 = −1.

Since P has no constant term, P(0, 0) = 0. Now assume that x 6= 0 or

y 6= 0 and take c =
√

x2 + y2. Since
(

x
√

x2 + y2

)2

+

(

y
√

x2 + y2

)2

= 1,

there exists some real number t such that sin t = x/
√

x2 + y2 and cos t =

y/
√

x2 + y2 and therefore P(sin t, cos t) = 1. By homogenicity, P(x, y) =
cn · P

(

x
c ,

y
c

)

, hence

P(x, y) =

(

√

x2 + y2

)n

· P

(

x
√

x2 + y2
,

y
√

x2 + y2

)

=

(

√

x2 + y2

)n

.
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for all x, y. The case n = 2k implies P(x, y) = (x2 + y2)k which satisfies also
the condition P(0, 0) = 0.

Solution 2. Like in Solution 1, express the polynomial as a sum of n + 1
monomials with coefficients a0, . . . , an and show that n = 2k.

We prove the claim of the problem by induction on k. In case k = 0
(omitting the extra assumption that P is non-constant) the claim holds ob-
viously. Assume now that k > 0 and the claim holds for k − 1. Substituting
t = 0 and t = π

2 into P(sin t, cos t) = 1 gives a0 = 1 and an = 1, respec-

tively. Hence the polynomial P(x, y) − (x2 + y2)k does not have terms with
xn and yn. Let Q(x, y) be such that P(x, y)− (x2 + y2)k ≡ xy · Q(x, y). Then
sin t cos t · Q(sin t, cos t) = 0 for every real number t, hence Q(sin t, cos t) = 0
for every t such that sin 2t 6= 0. By continuity of Q(sin t, cos t) as a function
of t, it follows that Q(sin t, cos t) ≡ 0. Now define R(x, y) = Q(x, y) + (x2 +
y2)k−1. As both Q and R are homogeneous polynomials of degree 2(k − 1),
the assumptions of the problem hold for polynomial R. By the induction hy-
pothesis, R(x, y) ≡ (x2 + y2)k−1. Hence Q(x, y) ≡ 0 and P(x, y) ≡ (x2 + y2)k.

TS-6. Every unit square of a n × n board is colored either red or blue so that
among all 2 × 2 squares on this board all possible colorings of 2 × 2 squares
with these two colors are represented (colorings obtained from each other by
rotation and reflection are considered different).

a) Find the least possible value of n.

b) For the least possible value of n find the least possible number of red
unit squares.

Answer: a) 5; b) 10.

Fig. 20

Solution. a) Since there are 24 = 16 = 42 possibilities
to color a 2 × 2 square in two colors and a n × n square
contains (n − 1)2 such subsquares, we must have n − 1 >

4, or n > 5. For n = 5 a suitable coloring is given in Fig. 20.
b) Fig. 20 presents a coloring with 10 red squares. We

will show that this is the least possible.
Note that in the 5 × 5 square there are 4 unit squares

in the corners, 12 squares on the sides (not in the corners),
and 9 inner squares. Each corner square is contained in
exactly one, side square in two and inner square in four 2 × 2 squares. All 16
colourings of 2 × 2 squares contain a total of 64 unit squares of which 32 are
red by symmetry. Therefore, if the 5× 5 square contains k red squares, among
them a corner squares, b side squares and c inner squares, then a + b + c = k
and a + 2b + 4c = 32. The equation a + 2b + 4c = 32 implies c 6 8. If c = 8,
then a = b = 0. If c = 7, then the only possibility to have k < 10 is b = 2 and
a = 0. If c 6 6, then always k = a + b + c > 10.
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Thus it is enough to show that there are no colorings with required prop-
erties with a = 0 and b 6 2. Indeed, in this case the 5 × 5 square has at least
two sides not containing any red squares. Without loss of generality, let one
of them be the upper side. We saw in part a) that for n = 5 each coloring of
2 × 2 squares must occur exactly once. Since among all 16 colorings of 2 × 2
squares there are 4 such where both upper unit squares are blue, and two
upper rows of the 5 × 5 square contain exactly 4 2 × 2 squares, all four such
colorings must be located in the two upper rows, among these the completely
blue coloring. Since the same is true for the other side which does not contain
any red squares, the two sides must meet and a completely blue 2 × 2 square

Fig. 21

must be in the corner where the two sides meet. With-
out loss of generality, let it be the left side. Then the two
squares on Fig. 21 must be red, because otherwise there
would be more than one completely blue 2× 2 square. But
now there are two 2 × 2 squares with red square in the
lower right corner and the rest of them blue. Therefore
there is no coloring satisfying the conditions with a = 0
and b 6 2 and the least number of red squares is k = 10.

Problems Listed by Topic

Number theory: OC-1, OC-6, OC-7, OC-12, FR-1, FR-7, FR-12, TS-1
Algebra: OC-4, OC-5, OC-13, FR-2, FR-8, FR-15, TS-5
Geometry: OC-2, OC-9, OC-11, FR-4, FR-6, FR-9, FR-11, FR-13, TS-3, TS-4
Discrete mathematics: OC-3, OC-8, OC-10, FR-3, FR-5, FR-10, FR-14, TS-2, TS-6
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