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Mathematics Contests in Estonia

The Estonian Mathematical Olympiad is held annually in three rounds: at
the school, town/regional and national levels. The best students of each
round (except the final) are invited to participate in the next round. Every
year, about 110 students altogether reach the final round.

In each round of the Olympiad, separate problem sets are given to the
students of each grade. Students of grade 9 to 12 compete in all rounds,
students of grade 7 to 8 participate at school and regional levels only. Some
towns, regions and schools also organize olympiads for even younger stu-
dents. The school round usually takes place in December, the regional
round in January or February and the final round in March or April in
Tartu. The problems for every grade are usually in compliance with the
school curriculum of that grade but, in the final round, also problems re-
quiring additional knowledge may be given.

The first problem solving contest in Estonia took place already in 1950.
The next one, which was held in 1954, is considered as the first Estonian
Mathematical Olympiad.

Apart from the Olympiad, open contests are held twice a year, usually in
October and in December. In these contests, anybody who has never been
enrolled in a university or other higher education institution is allowed to
participate. The contestants compete in two separate categories: the Juniors
and the Seniors. In the first category, students up to the 10th grade can
participate; the other category has no restriction. Being successful in the
open contests generally assumes knowledge outside the school curriculum.

Based on the results of all competitions during the year, about 20 IMO
team candidates are selected. IMO team selection contest for them is held in
April or May, lasting two days; each day, the contestants have 4.5 hours to
solve 3 problems, similarly to the IMO. All participants are given the same
problems. Some problems in our selection contest are at the level of diffi-
culty of the IMO but somewhat easier problems are usually also included.

The problems of previous olympiads are available at the Estonian Math-
ematical Olympiad’s website http://www.math.olympiaadid.ut.ee/eng.

Besides the above-mentioned contests and the quiz “Kangaroo” other
regional and international competitions and matches between schools are
held as well.

*

This booklet presents the problems of the open contests, the final round
of national olympiad and the team selection contest. For the open contests
and the final round, selection has been made to include only problems that
have not been taken from other competitions or problem sources and seem
interesting enough. The team selection contest is presented entirely.
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Selected Problems from Open Contests

OC-1. (Juniors.) Find all pairs (a, b) of real numbers with a + b = 1, which

satisfy (a2 + b2)(a3 + b3) = a4 + b4.

Answer: (0, 1), (1, 0), and ( 1
2 , 1

2 ).

Solution 1. As a3 + b3 = (a + b)(a2 − ab + b2), the given equation can be
expressed as (a2 + b2)(a2 − ab + b2) = a4 + b4. Expanding brackets gives
−a3b + 2a2b2 − ab3 = 0, which factorizes to −ab(a − b)2 = 0. Hence a = 0
or b = 0 or a − b = 0. Together with the condition a + b = 1, we get the

following solutions: (0, 1), (1, 0), and ( 1
2 , 1

2 ).

Solution 2. Denote ab = c. Then a2 + b2 = (a + b)2 − 2ab = 1 − 2c,
a3 + b3 = (a + b)(a2 − ab + b2) = 1 · (1 − 2c − c) = 1 − 3c, and a4 + b4 =
(a2 + b2)2 − 2a2b2 = (1 − 2c)2 − 2c2 = 2c2 − 4c + 1. The given equation
(a2 + b2)(a3 + b3) = a4 + b4 can now be expressed as (1 − 2c)(1 − 3c) =
2c2 − 4c + 1, or equivalently, c(4c − 1) = 0. Hence, c = 0 or c = 1

4 . Now the
two simultaneous equations a + b = 1 and ab = c give the solutions a = 0,

b = 1 and a = 1, b = 0 for c = 0, and a = 1
2 , b = 1

2 for c = 1
4 .

OC-2. (Juniors.) Consider a parallelogram ABCD.

a) Prove that if the incenter of the triangle ABC is located on the diagonal
BD, then the parallelogram ABCD is a rhombus.

b) Is the parallelogram ABCD a rhombus whenever the circumcenter of
the triangle ABC is located on the diagonal BD?

Answer: b) no.

A B

CD

I

Fig. 1

Solution. a) As the incenter of the triangle
ABC is located on diagonal BD (Fig. 1), we
can conclude that BD is the bisector of ∠ABC.
Therefore ∠ABD = ∠CBD. However, since
ABCD is a parallelogram, ∠ABD = ∠CDB.
Hence the triangle BCD is isosceles, i.e. |BC| =
|CD|. Thus, ABCD is a rhombus.

b) Let ABCD be a rectangle with different
side lengths. The circumcenter of triangle ABC
is located on the intersection of the diagonals of the rectangle. We see that
all the required conditions are satisfied, however ABCD is not a rhombus.

OC-3. (Juniors.) The numbers 0, 1, and 2 are written in the vertices of a
triangle. One step involves increasing two of the three numbers by m or
decreasing one of the three numbers by n. Is it possible that after some steps
there are numbers 1, 2, and 3 (in an arbitrary order) written in the vertices if

a) m = 3, n = 6;

b) m = 4 1
2 , n = 6?
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Answer: a) no; b) yes.
Solution 1. a) Both the step that involves increasing two of the numbers

by 3 and the step that involves decreasing one of the numbers by 6 result
in the sum of all three numbers being changed by 6. Thus the remainder
when the sum of the three numbers is divided by 6 will always be the same
regardless of the number of steps taken. But as the sums 0 + 1 + 2 and
1 + 2 + 3 give different remainders when divided by 6, it is impossible to
reach the required end situation from the given initial situation.

b) First increase the second and the third numbers three times by 4 1
2 ;

we end up with 0, 14 1
2 , 15 1

2 in the vertices. Now increase the first and the

second numbers by 4 1
2 and also increase the first and the third numbers by

4 1
2 ; so we end up with 9, 19 and 20 written in the three vertices, respectively.

Finally decrease the first number once by 6 and the other two three times
by 6, achieving the situation in question.

Solution 2. a) Consider one of the numbers. The remainder when this
number is divided by 3 is the same regardless of the number of steps taken.
Therefore, if we want to achieve the situation where 1, 2, 3 are located in the
three vertices, the numbers 1 and 2 should stay in the same vertices where
they were at the beginning and 3 has to be in the vertex where 0 was. Notice
that two increasings are exactly cancelled out by one decreasing. Thus, the
vertices where the numbers remain the same should have undergone an
even number of increasings and the vertex where 0 is replaced by 3 should
have been exposed to an odd number of increasings. Hence there should
have been an odd number of increasings in total which is impossible since
each increasing step influences the numbers in two vertices.

b) As in Solution 1.

OC-4. (Juniors.) Find all pairs (n, k) of positive integers that satisfy the
equality n! + (n + 1)! = k! + 120.

Answer: (4, 4), (5, 6).
Solution 1. Note that for every n, n! + (n + 1)! = n! + n! · (n + 1) =

n! · (n + 2) 6 (n + 2)!. Thus if n! + (n + 1)! = k! + 120, then due to 120 = 5!
we have k! + 5! 6 (n + 2)!. This inequality in turn implies k < n + 2 and 5 <

n + 2. Hence 5 6 n + 1, leading to 0 6 (n + 1)!− 5! = k!−n!. Consequently,
k > n, i.e., the cases to be considered are k = n and k = n + 1. If k = n,
then the initial equation leads to (n + 1)! = 120, giving n = 4, k = 4. If
k = n + 1, then analogously n = 5, k = 6.

Solution 2. If k < n, then n! > k!. If, additionally, n > 4, then (n + 1)! >

120, giving n! + (n + 1)! > k! + 120. But if n < 4, then n! + (n + 1)! 6 30 <

k! + 120. The desired equality can hold in neither of the cases.
If k > n + 1, then k!− (n + 1)! is positive and is also divisible by (n + 1)!,

hence k! − (n + 1)! > (n + 1)!. On the other hand, n! − 120 < (n + 1)!,
giving k! − (n + 1)! > n! − 120. Thus, there is no solution in this case either.

Hence n = k or n + 1 = k, leading to two solutions (n, k) = (4, 4), (5, 6).
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Solution 3. The equation implies that 120 is divisible by the minimum of
n! and k!. As 120 = 5!, either n 6 5 or k 6 5. Consider both cases.

If n ∈ {1, 2, 3}, then n! + (n + 1)! − k! < 120, whence the equation has
no solution. If n = 4, then 120 = 144 − k!, whence k! = 24 and k = 4. If
n = 5, then 120 = 840− k!, whence k! = 720 and k = 6.

If k ∈ {1, 2, 3, 4, 5}, then the initial equation implies that n! + (n + 1)!
lies between 121 and 240. This is possible only if n = 4, since if n = 3, then
n! + (n + 1)! = 30, and if n = 5, then n! + (n + 1)! = 840. If n = 4, then
n! + (n + 1)! = 144, which corresponds to k = 4.

OC-5. (Juniors.) Consider the diagonals A1A3, A2 A4, A3 A5, A4 A6, A5 A1

and A6A2 of a convex hexagon A1 A2 A3 A4 A5 A6. The hexagon whose ver-
tices are the points of intersection of the diagonals is regular. Can we con-
clude that the hexagon A1 A2A3 A4 A5 A6 is also regular?

Answer: yes.

Fig. 2

Solution 1. We show that the hexagon A1 A2 A3 A4A5 A6

has all its side lengths equal and all its angles equal. As the
internal hexagon is regular, the grey triangles in Fig. 2 all
have two angles of equal size and so they are isosceles. Ad-
ditionally, all these six isosceles triangles have their bases
of equal lengths, thus they are all congruent. The black
triangles on Fig. 2 are isosceles because the grey triangles
are isosceles. Additionally, their vertex angles are equal, as
they all are equal to the angles of a regular hexagon. Therefore the black
triangles are all congruent and thus their bases are of equal length. Now
the angles of the external hexagon are all formed of the angles of two grey
triangles and one black triangle. As both of the latter are congruent, the
external hexagon has its angles of equal size.

Solution 2. Lengthen the sides of the internal regular hexagon until in-
tersection. The points of intersection are exactly the vertices of the initial
external hexagon. Because of the symmetry of the internal hexagon the
points of intersection are symmetrically located about the midpoint of the
internal hexagon. Thus, the external (initial) hexagon is also regular.

OC-6. (Juniors.) A cashier has a stack of n notes lying on top of each other.
He has to turn all notes front side up, however the order of the notes is not
important. Every step consists of taking a block of consecutive notes and
turning them around in the stack. Find the smallest number of steps that
will suffice him to turn all notes in the stack front side up, irrespective of
the initial position of notes.

Answer: n
2 for even n, and n+1

2 for odd n.
Solution 1. Let the cashier always choose the part of the stack which

starts from the top most note facing the wrong way and ends with the bot-
tom most note facing the wrong way. Then after k steps there are at least
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k notes facing the right way on top of the stack and so are k notes at the
bottom of the stack. Therefore for even n, after at least n

2 steps all the notes

are facing upwards. For odd n it is guaranteed that after n−1
2 steps there are

n − 1 notes facing the right way, and one more step may be needed to turn

the middle note the right way. So, overall at least n+1
2 steps are sufficient.

To show the necessity, assume that the stack itself is located in between
a bigger stack where all the notes are already facing the right way, and call
the number of pairs of neighboring notes where one of the notes is the right
way around and the other is the wrong way around degree of disarrange-
ment. If the degree of disarrangement of the stack is 0, we have achieved
the required situation (we introduce the concept of the bigger stack to en-
sure that if all the notes in our stack are the wrong way around the degree
of disarrangement of the stack is non-zero). At every step, the degree of
disarrangement of the stack cannot decrease by more than 2, since the rel-
ative order of consecutive notes can only change at the boundaries of the
block to be turned around. Assume the initial stack consists of notes facing
alternately the right way and the wrong way, whereby for odd n assume the
top and the bottom notes are the wrong way around. Then for odd n the

degree of disarrangement to start with is n + 1 and so we need at least n+1
2

steps. For even n the initial degree of disarrangement is n because one of the
endmost notes is the right way around and thus at least n

2 steps are needed.
Remark. In the first part of the solution we cannot claim that at every

step the number of notes facing the wrong way decreases by 2. In addition
to the two endmost notes facing the wrong way, all the notes between them
are also turned around and as a result the number of notes facing the wrong
way may even increase. For that reason it is necessary to monitor the pro-
gression of success from the stack’s ends onwards.

Solution 2. Let us show that every possible stack can be put in order as

required by no more than n
2 (for even n) or n+1

2 (for odd n) steps as follows.
For n = 2 the statement holds. Indeed, if both notes are facing the wrong

way, we simply turn them around together, and if only one of the notes is
facing the wrong way we only turn this one around. Now partition the
stack into smaller stacks, each containing two consecutive notes and solve
the problem for each stack separately. For even n no more than n

2 steps are
required. For odd n the last note has no counterpart, however it still may

require one step, so overall no more than n+1
2 steps are needed.

The necessity is shown as in Solution 1.
Solution 3. Let us present one more strategy to achieve the required situ-

ation by n
2 (for even n) or n+1

2 (for odd n) steps for any stack of notes. If no
more than half of the notes are facing the wrong way we simply turn each
of them around individually. This requires as many steps as is the number
of such notes, i.e. for even n no more than n

2 steps and for odd n no more

than n−1
2 steps. If more than half of the notes are facing the wrong way, first
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turn the whole stack around and then individually turn around all those
notes facing the wrong way. For even n no more than 1 + ( n

2 − 1) = n
2 steps

are required. For odd n no more than 1 + n−1
2 = n+1

2 steps are required.
The necessity is again shown as in Solution 1.

OC-7. (Juniors.) Consider a positive integer N with exactly 6 positive divi-
sors d1, . . . , d6 such that 1 = d1 < d2 < d3 < d4 < d5 < d6 = N. Call such
an integer N good if the sum d4 + d5 is divisible by the sum d2 + d3.

a) Find the smallest positive integer N which has exactly 6 positive di-
visors and which is not good.

b) Prove that there are infinitely many positive integers N all with ex-
actly 6 positive divisors and all not good.

Answer: a) 20.
Solution 1. a) Considering the numbers from 1 to 20 we see that exactly

three of them have 6 divisors: 12 (the divisors are 1, 2, 3, 4, 6, 12), 18 (1, 2, 3,
6, 9, 18), and 20 (1, 2, 4, 5, 10, 20). For 12 the sum d4 + d5 = 4 + 6 is divisible
by the sum d2 + d3 = 2 + 3 and similarly, for 18 the sum d4 + d5 = 6 + 9
is divisible by d2 + d3 = 2 + 3. However, for 20 the sum d4 + d5 = 5 + 10
is not divisible by the sum d2 + d3 = 2 + 4. Thus, the smallest non-good
number with exactly 6 factors is 20.

b) Take N = 4p, where p is an arbitrary prime number larger than 4.
Then N has exactly 6 different divisors: 1, 2, 4, p, 2p, 4p, in increasing order.
Indeed, as N = 22 p1, where 2 and p are two different prime numbers, all of
its divisors can be expressed as 2i pj where i 6 2 and j 6 1. From here we
obtain exactly 3 · 2 = 6 choices: i can be either 0, 1 or 2 and for every i we
have two choices for j: 0 or 1.

Here, d4 + d5 = p + 2p = 3p is odd because p > 2 and thus is not
divisible by an even number d2 + d3 = 2 + 4 = 6. Therefore, none of the
numbers expressed as N = 4p where p > 4 is a prime is good. As there
are infinitely many prime numbers, there must also be infinitely many such
numbers N.

Solution 2. Let us find all N > 1 which have exactly 6 divisors.
1) If N = pk, where p is a prime, then it has the divisors 1, p, . . . , pk, i.e.

k + 1 divisors overall. Thus, all N = p5 satisfy this requirement.
2) Let N have two different prime divisors, i.e. N = pkql . For k > 2 and

l > 2 we see that N has at least 9 different divisors: 1, p, p2, q, q2, pq, p2q,
pq2, and p2q2. For l = 1, N has the divisors 1, p, . . . , pk, and q, pq, . . . , pkq,
i.e. 2(k + 1) divisors in total. Thus, all N = p2q satisfy the requirement.

3) Let N have at least three prime divisors p, q, r. Then N has at least 8
different divisors: 1, p, q, r, pq, pr, qr, and pqr, and we get no more numbers.

Let us now consider N = p5 and N = p2q in more detail.
i) If N = p5, then di = pi−1 and d4 + d5 = p3 + p4 = p3(1 + p) is

divisible by d2 + d3 = p + p2 = p(1 + p). Thus they are all good.
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ii) If N = p2q, where q < p, then N has the divisors 1, q, p, pq, p2, and
p2q, in increasing order, and d4 + d5 = pq + p2 = p(q + p) is divisible by
d2 + d3 = q + p and thus, they are all good, too.

iii) If N = p2q, where p < q < p2, then N has the divisors 1, p, q, p2, pq,
and p2q, in increasing order, and d4 + d5 = p2 + pq = p(p + q) is divisible
by d2 + d3 = p + q. Thus, they are all good, too.

iv) Finally, let N = p2q, where q > p2. Then N has the divisors 1, p, p2,
q, pq, and p2q, in increasing order and d4 + d5 = q + pq = q(1 + p) is not
divisible by d2 + d3 = p + p2 = p(1 + p) because the prime number q can-
not be divisible by another prime number p. Thus all these numbers have
exactly 6 different divisors and they all are non-good. To get the smallest
of these numbers, we have to take p and q as small as possible, i.e. p = 2
and q = 5 (to achieve q > p2 = 4). Then N = 22 · 5 = 20. Finally, there
are infinitely many of these numbers N because we have infinitely many
choices for prime numbers p and q such that q > p2. For example, we can
take p = 2 and q an arbitrary prime number bigger than 5. As there are
infinitely many prime numbers, we have proven the statement.

OC-8. (Seniors.) Prove that none of the integers that contain one 2, one 1,
and all the rest zeros, can be expressed as a sum of two perfect squares or
as a sum of two perfect cubes.

Solution. All the numbers described in the problem are divisible by 3
(as their sum of digits is divisible by 3). Note that all perfect squares leave
the remainder 0 or 1 when divided by 3, and therefore, for the sum of the
two perfect squares to be divisible by 3, they both have to be divisible by
3. Now, as the numbers are both divisible by 3, their squares are divisible
by 9 and thus the sum of the squares is divisible 9. However, the number
described in the problem is not divisible by 9, a contradiction.

Note that when a cube number is divided by 3, it will leave the re-
mainder of either 0, 1 or −1. Indeed, (3k)3 = 9(3k3) and (3k ± 1)3 =
27k3 ± 27k2 + 9k ± 1 = 9(3k3 ± 3k2 + k) ± 1. The numbers described in
the problem give the remainder 3 when divided by 9 (as their sum of digits
gives the remainder 3 when divided by 9), therefore we conclude that it is
impossible to express them as sums of two cubes.

OC-9. (Seniors.) Consider an acute-angled triangle ABC and its circumcir-
cle. Let D be a point on the arc AB which does not include point C and
let A1 and B1 be points on the lines DA and DB, respectively, such that
CA1 ⊥ DA and CB1 ⊥ DB. Prove that |AB| > |A1B1|.

Solution 1. If CD is the diameter of the circumcircle of triangle ABC, then
A1 = A and B1 = B and the statement holds. Assume that CD is not the di-
ameter (Fig. 3). Then A1 6= A and B1 6= B. The point A1 lies on the ray AD
if and only if the point B1 does not lie on the ray BD (depending on which
side of the diameter through point C point D is located). Thus, ∠CAA1 =
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A B

C

D

A1

B1

Fig. 3

∠CBB1 (because the sum of opposite
angles of a cyclic quadrilateral ADBC
is 180◦). Thus, the right-angled tri-
angles AA1C and BB1C are similar.
From ∠ACA1 = ∠BCB1 we see that
∠ACB = ∠A1CB1. This together with
|AC|
|BC| = |A1C|

|B1C| gives that ACB and

A1CB1 are similar. As |AC| > |A1C|,
we conclude that |AB| > |A1B1|.

Solution 2. Since the angles CA1D
and CB1D are right angles, the points
C, A1, D, and B1 form a cyclic quadri-
lateral and thus ∠CAB = ∠CDB =
∠CA1B1. Similarly, ∠CBA = ∠CB1A1. Therefore the triangles ABC and
A1B1C are similar. As |CA| > |CA1|, we deduce that |AB| > |A1B1|.

Solution 3. The radius R of the circumcircle of the quadrilateral CADB
is at least as large as the radius R1 of the circumcircle of the quadrilateral
CA1DB1 because CD is a chord in the first one and a diameter in the second
one. The sine law in triangles ADB and A1DB1 gives |AB| = 2R sin ∠D and
|A1B1| = 2R1 sin ∠D. As R > R1, we deduce |AB| > |A1B1|.

Remark. The statement holds for all triangles ABC and all points D on
the circumcircle, given D is not one of the vertices of the triangle.

OC-10. (Seniors.) Find all pairs (m, n) of positive integers for which the
m × n grid contains exactly 225 rectangles whose side lengths are odd and
whose edges lie on the lines of the grid.

Answer: (1, 29), (5, 9), (9, 5), and (29, 1).
Solution. The m × n grid is formed by m + 1 horizontal and n + 1 ver-

tical lines. Number the horizontal lines with numbers from 1 to m + 1 and
the vertical lines with numbers from 1 to n + 1. Rectangles with odd side
lengths arise if and only if two horizontal lines with different parity and
two vertical lines with different parity intersect.

Assume that at least one of the numbers m and n is even. We can assume
without loss of generality that m = 2k. Then there are exactly k + 1 odd-
numbered and k even-numbered horizontal lines and thus there are k(k + 1)
pairs of lines of different parity. But this means that overall the number of
rectangles with odd side lengths is even and cannot be 225. Therefore m
and n are both odd numbers. Let now m = 2k − 1 and n = 2l − 1. Then we
have exactly k even-numbered and k odd-numbered horizontal lines and l
even-numbered and l odd-numbered vertical lines. Overall it is possible to
form k · k · l · l = (kl)2 rectangles with odd side lengths. From (kl)2 = 225
we get kl = 15. The solutions are k = 1, l = 15 or k = 3, l = 5 (or vice
versa). So m = 1, n = 29 or m = 5, n = 9 (or vice versa).
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OC-11. (Seniors.) Given a triangle ABC where |BC| = a, |CA| = b and
|AB| = c, prove that the equality

1

a + b
+

1

b + c
=

3

a + b + c
holds if and only if ∠ABC = 60◦.

Solution. By finding the common denominator on the left hand side,
transform the equation to (a + 2b + c)(a + b + c) = 3(a + b)(b + c). Ex-
panding the brackets and simplifying gives b2 = a2 + c2 − ac. Comparing
the latter with the cosine law b2 = a2 + c2 − 2ac cos β, we see that the equal-

ity holds if and only if cos β = 1
2 , i.e., β = 60◦.

OC-12. (Seniors.) A square ABCD lies in the coordinate plane with its ver-
tices A and C lying on different coordinate axes. Prove that one of the ver-
tices B or D lies on the line y = x and the other one on y = −x.

Solution 1. Assume without loss of generality that A is located on the
x-axis and C is located on the y-axis, let these points have coordinates of
A (a, 0) and C (0, c). As the diagonals of a square bisect each other, we know
that the intersection point P of diagonal is also the mid-point of AC, i.e.

P ( a
2 , c

2 ) and
−→
PC = (− a

2 , c
2 ).

As the diagonals of a square are perpendicular to each other and of the

same length, the vectors
−→
PB and

−→
PD have the same length as the vector−→

PC and are perpendicular to it. But for a given vector ~u = (s, t), there
are exactly two vectors perpendicular to and having the same length as it:

~v = (−t, s) and −~v = (t,−s). For the vector ~u =
−→
PC = (− a

2 , c
2 ) we get

~v = ( c
2 , a

2 ) and w.l.o.g. we can assume that
−→
PB = ~v and

−→
PD = −~v. Now

from here B( a+c
2 , a+c

2 ) and D( a−c
2 , c−a

2 ). Thus, we see that the point B is
located on the line y = x and point D is located on the line y = −x.

Solution 2. W.l.o.g., assume that the vertices of the square are labelled
counter-clockwise with A (a, 0), C (0, c), where a, c > 0 (other cases are
similar). Let O be the origin, then ∠AOC = 90◦, i.e. the circumcircle (with

x

y

A

B

C

D

O

Fig. 4

x

y

A

B

C

D

O

Fig. 5
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diameter AC) of the square ABCD passes through the origin O. Based on
the assumptions made, B definitely lies in the first quadrant and D has to lie
in the second quadrant (Fig. 4) or in the fourth quadrant (Fig. 5), otherwise
the circle with the diameter BD cannot pass the origin. Now note that the
vertices of the square divide its circumcircle into four equal arcs of 90◦, each
having an inscribed angle of 45◦ subtending on it. Thus, ∠AOB = ∠BOC =
45◦, i.e., B lies on the line with equation y = x (if A = O or C = O, then one
of those angles will lose its meaning, however, the other one is still 45◦ and
that is sufficient). Similarly, ∠COD = 45◦, if D lies in the second quadrant,
or ∠AOD = 45◦, if D lies in the fourth quadrant. In both cases, D lies on
the line y = −x; this condition is also met in the special case D = O.

OC-13. (Seniors.) Let a, b, c be fixed real numbers, where 0 6 a, b, c 6 4.
Prove that the system of equations







p2 − aq = −3

q2 − br = −4

r2 − cp = −5

has no real solutions (p, q, r).
Solution. Adding up all equations gives p2 − cp + q2 − aq + r2 − br =

−12. From the inequality (p − c
2 )

2
> 0 we have p2 − cp > − c2

4 > −4 and

similarly, q2 − aq > −4 and r2 − br > −4. Adding up these inequalities,
we see that to avoid a contradiction with the equality derived first, all three
inequalities must actually be equalities, i.e. a = b = c = 4 and p = q = r =
2. But this does not satisfy the initial equations.

OC-14. (Seniors.) Let ABC be a triangle with integral side lengths. The
angle bisector drawn from B and the altitude drawn from C meet at point P
inside the triangle. Prove that the ratio of areas of triangles APB and APC
is a rational number.

A B

C

P

H

K

L

Fig. 6

Solution 1. Let H be the foot of the alti-
tude drawn from C. First prove that |AH|
and |BH| are rational numbers. For that,
use the Pythagorean theorem for triangles
ACH and BCH to obtain |AH|2 + |CH|2 =
|AC|2 and |BH|2 + |CH|2 = |BC|2. There-
fore |AC|2 − |BC|2 = |AH|2 − |BH|2 =
(|AH| − |BH|) · (|AH|+ |BH|) = (|AH| −
|BH|) · |AB|. We see that |AH| − |BH| =
|AC|2−|BC|2

|AB| is rational and so are |AH| =
|AB|+(|AH|−|BH|)

2 and |BH| = |AH| − (|AH| − |BH|). Let now K be the
projection of P to BC (see Fig. 6). As P lies on the angle bisector of B,
it is equidistant from both AB and BC, i.e., |PH| = |PK|. Consequently,
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SAPB

SBPC
=
|AB| · |PH|
|BC| · |PK| =

|AB|
|BC| . As CH⊥AB, also

SBPC

SAPC
=

|CP| · |BH|
|CP| · |AH| =

|BH|
|AH| .

Thus,
SAPB

SAPC
=

|AB|
|BC| ·

|BH|
|AH| is rational as a product of two rational numbers.

Solution 2. Let H be the foot of the altitude drawn from C and let L be
the projection of P to AC (see Fig. 6). Now ∠CPL = 90◦ −∠ACH = 90◦ −
(90◦ − ∠CAB) = ∠CAB, giving

|PH|
|PL| = |PH|

|PC|·cos ∠CAB
. The angle bisector

theorem gives
|PH|
|PC| = |BH|

|BC| = cos ∠ABC. Consequently,

SAPB

SAPC
=

|AB| · |PH|
|AC| · |PL| =

|AB|
|AC| ·

cos ∠ABC

cos ∠CAB
.

As the side lengths of the triangle ABC are integers,
|AB|
|AC| is rational. By the

cosine law, the cosines of the angles of triangle ABC are rational, whence
cos ∠ABC

cos ∠CAB
is rational. Altogether,

SAPB

SAPC
is rational.

OC-15. (Seniors.) Prove that the set of integers {0, 1, 2, . . . , 2n − 1} can be
partitioned into n + 1 disjoint subsets A0, A1, . . . , An such that both of the
following hold:

a) If k + l = n, then the subsets Ak and Al have the same number of
elements.

b) If s and t are non-negative integers and s + t 6 n, then for an arbitrary
element z in the set As+t, there exist elements x and y from the sets As

and At, respectively, such that x + y = z.

Solution 1. Divide the set A into subsets such that the subset Ak consists
of only those numbers which have exactly k ones in their binary represen-
tation. Then A0 = {0}, A1 = {1, 2, 4, . . . , 2n−1}, . . . , An = {2n−1}. Let us
show that both conditions are met. The first condition is met because the
numbers with k ones are in one-to-one correspondence with the numbers
with n − k ones: given a number, simply replace all ones in its binary repre-
sentation by zeros and vice versa. To show that the second condition is met,
choose an arbitrary number z from the set As+t. Its binary representation
contains exactly s + t ones. Construct a binary number x by choosing s ones
from the binary representation of z and filling all other binary places by ze-
ros, analogously construct a second number y based on remaining ones in
z. Then x ∈ As, y ∈ At and x + y = z.

Solution 2. Let us prove the statement by induction. If n = 1, then
A = {0, 1}, and taking A0 = {0} and A1 = {1} we get a partition that
satisfies both of the requirements.

Assume now that we have a partition C0, C1, . . . , Cn for the set C =
{0, 1, . . . , 2n − 1}. Construct a partition of the set A = {0, 1, . . . , 2n+1 − 1}
based on that. First, generate the sets B0, B1, . . . , Bn as follows: the elements

11



of the subset Bi are derived from the elements of the subset Ci by adding
2n to them. The subsets B0, B1, . . . , Bn form a partition of the set A \ C =
{2n, 2n + 1, . . . , 2n+1 − 1} and from the construction for all i = 0, 1, . . . , n
the corresponding subsets Bi and Ci have the same number of elements.

Now, let Ai = Ci ∪ Bi−1 for all i = 1, 2, . . . , n and in addition to that,
A0 = C0 and An+1 = Bn. Then, |A0| = |An+1| = 1, and if k + l = n + 1, then
also k, l 6= 0, |Ak| = |Bk−1|+ |Ck| = |Ck−1|+ |Ck| and |Al | = |Bl−1|+ |Cl | =
|Cl−1|+ |Cl |. As (k − 1) + l = k + (l − 1) = n, we see that |Ck−1| = |Cl | and
|Ck| = |Cl−1|; thus |Ak| = |Al |.

To verify that the second condition is met, let z be an arbitrary element
of As+t. If t = 0, then As = As+t and At = A0 = {0}, so we can take
x = z and y = 0. Now assume t > 1. If z < 2n, then z is an element of
Cs+t and thus there exist elements x and y in the sets Cs ⊂ As and Ct ⊂ At,
respectively, such that x + y = z. If z > 2n, then z is an element of Bs+t−1,
i.e. z − 2n is an element of the set Cs+t−1 and thus the sets Cs and Ct−1

contain elements x and y, respectively, such that x + y = z − 2n. But now
x + (y + 2n) = z, where y and z + 2n are elements of the sets Cs ⊂ As and
Bt−1 ⊂ At, respectively. So the statement holds for all positive n.

Remark. The subsets A0, A1, . . . , An formed in Solution 2 are actually the
same as those formed in Solution 1.

OC-16. (Seniors.) How many positive integers are there that are divisi-
ble by 2010 and that have exactly 2010 divisors (1 and the integer itself
included)?

Answer: 24.
Solution. Let N be a positive integer that is divisible by 2010 and that

has exactly 2010 positive divisors. Since 2010 = 2 · 3 · 5 · 67, also N should
be divisible by these four primes. Thus, N = 2a · 3b · 5c · 67d · s, where a, b, c,
d > 0 and s is not divisible by any of the primes 2, 3, 5, 67. All the factors of
N can be expressed as 2i · 3j · 5k · 67l · t, where 0 6 i 6 a, 0 6 j 6 b, 0 6 k 6 c,
0 6 l 6 d, and t is a factor of s. There are a + 1 choices for i (from 0 to a) and
similarly, there are b + 1, c + 1 and d + 1 choices for j, k and l, respectively.
Therefore, N has δ(N) = (a + 1)(b + 1)(c + 1)(d + 1)δ(s) different factors,
where δ(x) stands for the number of factors of x. We require δ(N) = 2010.
As a + 1 > 1, b + 1 > 1, c + 1 > 1, and d + 1 > 1, we see that each of
these numbers is divisible by some prime numbers and the number δ(N) =
(a + 1)(b + 1)(c + 1)(d + 1)δ(s) can thus be expressed as a product of at
least four prime numbers. But as 2010 itself is a product of exactly four
prime numbers, we conclude that a + 1, b + 1, c + 1, and d + 1 are exactly
those primes 2, 3, 5, and 67, in some order, and δ(s) = 1. From the latter
condition we see that s = 1 because any numbers bigger than 1 has more
than one factor. So for N to satisfy the conditions, N must be expressible as
2a · 3b · 5c · 67d, where a, b, c, d are the numbers 1, 2, 4, and 66 in some order.
Thus there are 4! = 24 numbers satisfying the conditions.
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Selected Problems from the Final Round

of National Olympiad

FR-1. (Grade 9.) Juku discovered that of the things in his satchel, 60 per-
cent were ugly and 76 percent were useless. He scrapped all things that
were both ugly and useless, and added things that were both beautiful and
useful. After this, of the things in Juku’s satchel, 25 percent are ugly and 45
percent are useless. How many percent of the things in Juku’s satchel were
both beautiful and useful initially?

Answer: 4 percent.
Solution. Observe that the amount of things that are beautiful but use-

less and things that are useful but ugly remained unchanged. The differ-
ence between the percentages of these things was 76%− 60% = 16% before
displacement but is 45% − 25% = 20% after that. Hence the overall num-
ber of things in the satchel decreased 20 : 16 = 1.25 times. Things that are
beautiful but useless form 45% of all things after the displacement, hence
they formed 45% : 1.25 = 36% before it. As there were 100% − 60% = 40%
of beautiful things in total, the things that were both beautiful and useful
constituted 40% − 36% = 4% of the content of the satchel.

Remark. This problem can of course be solved in completely standard
ways via linear equations.

FR-2.

4
5

6
(Grade 9.) There are 8 identical dice. The numbers 4, 5, 6

are written on three faces of the dice, as shown in the figure, and
the remaining faces carry the numbers 1, 2, 3 so that the sum of
the numbers written on each pair of opposite faces is 7.

a) Show that using these dice, it is possible to form a 2 × 2 × 2 cube so
that every two faces that touch each other carry the same number.

b) Is it possible to do this in such a way that only numbers 4, 5, 6 occur
on the outer surface of the resulting cube?

Answer: b) no.
Solution. a) Put together four dice as depicted in Fig. 7. These dice form

the lower layer of the cube. On top of this, place another similar layer

6

3

2

4

5 6

4

5

3

2

6

4

5

3

2 6

3

2

4

5

Fig. 7

6

4

5

3

24

6

2

1

5

5

3

6

4

1

Fig. 8

turned upside down. By the con-
struction of the layer, the num-
bers on the faces touching each
other within one layer coincide
everywhere. As the second layer
is turned upside down, the num-
bers on faces of cubes of different
layers that touch each other also
coincide.
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b) Suppose it is possible to form a 2 × 2 × 2 cube so that its surface con-
tains only numbers 4, 5, 6. As exactly 3 faces of each unit cube are visible, all
three numbers must occur on those. Place the cube in such a way that the
upper layer has 6 in its southeastern corner (see Fig. 8). Then, as the only
possibility, the upper layer must have 4 in its southwestern corner and 5 in
its northeastern corner. Now it is impossible to place a dice in the north-
western corner since it should touch both of its neighbors with number 1.

FR-3. (Grade 10.) Prove that

a2 + bc

b + c
+

b2 + ca

c + a
+

c2 + ab

a + b
> a + b + c

for all positive real numbers a, b, c.
Solution 1. W.l.o.g., assume a > b > c. Then

a2 + bc

b + c
+

b2 + ca

c + a
+

c2 + ab

a + b
=

=
a2 + (b + c)c − c2

b + c
+

b2 + (c + a)a − a2

c + a
+

c2 + (a + b)b − b2

a + b
=

=
a2 − c2

b + c
+ c +

b2 − a2

c + a
+ a +

c2 − b2

a + b
+ b > a + b + c,

since

a2 − c2

b + c
+

b2 − a2

c + a
+

c2 − b2

a + b
=

a2 − b2 + b2 − c2

b + c
+

b2 − a2

c + a
+

c2 − b2

a + b
=

= (a2 − b2)

(

1

b + c
− 1

c + a

)

+ (b2 − c2)

(

1

b + c
− 1

a + b

)

=

=
(a2 − b2)(a − b)

(b + c)(c + a)
+

(b2 − c2)(a − c)

(b + c)(a + b)
> 0.

Solution 2. Rearranging and transforming the expression gives

a2 + bc

b + c
− a +

b2 + ca

c + a
− b +

c2 + ab

a + b
− c =

=
a2 + bc − ab − ac

b + c
+

b2 + ca − bc − ba

c + a
+

c2 + ab − ca − cb

a + b
=

=
(a − b)(a − c)

b + c
+

(b − c)(b − a)

c + a
+

(c − a)(c − b)

a + b
=

=
(a2 − b2)(a2 − c2) + (b2 − c2)(b2 − a2) + (c2 − a2)(c2 − b2)

(b + c)(c + a)(a + b)
=

=
a4 + b4 + c4 − a2b2 − a2c2 − b2c2

(b + c)(c + a)(a + b)
=

=
(a2 − b2)2 + (c2 − a2)2 + (b2 − c2)2

2(b + c)(c + a)(a + b)
> 0.
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FR-4. (Grade 10.) Find all quadruples (w, x, y, z) of positive integers such
that wx + wy = wz.

Answer: (w, x, y, z) = (2, n, n, n + 1), where n is any positive integer.
Solution 1. Consider the following cases.
If w = 1, then no solution can exist, since the l.h.s. of the equality equals

2 while the r.h.s. equals 1.
If w > 2, then x < z and y < z, i.e., x 6 z − 1 and y 6 z − 1. Thus

wx + wy 6 wz−1 + wz−1 = 2 ·wz−1 6 w ·wz−1 = wz. To satisfy the equation,
equalities must hold in both inequalities and thus x = y = z − 1 and w = 2.
This gives the solutions (w, x, y, z) = (2, n, n, n + 1), where n is an arbitrary
positive integer.

Solution 2. In the case w = 1 there are no solutions because 1 + 1 =
2 is not a power of 1. Assume in the rest that w > 1. W.l.o.g., assume
x 6 y < z. Then the equation takes the form wx(1 + wy−x) = wz, whence
1 + wy−x = wz−x. Consequently, 1 + wy−x is a positive power of w and is
divisible by w. If y − x were positive, then wy−x would also be divisible by
w, whence 1 should be divisible by w, which is impossible. The remaining
case y − x = 0 leads to 2 = wz−x that gives w = 2 and z − x = 1 as the only
possibility. Hence the solutions of the equation are of the form (w, x, y, z) =
(2, n, n, n + 1), where n is any positive integer. Checking shows that all
these quadruples satisfy the equation.

FR-5. (Grade 10.) Each side of a convex quadrangle ABCD is a diameter of
a circle. All four circles pass through the same point O, different from the
vertices of the quadrangle, and no two circles have common points other
than those mentioned. Prove that ABCD is a rhombus.

A B

CD

O

P

Q

Fig. 9

Solution. Since AB, BC, CD, and DA
are diameters (Fig. 9), AOB, BOC, COD,
and DOA are right angles. Hence AOC
and BOD are straight angles, i.e., the di-
agonals of the quadrangle meet at O. The
circles drawn on the opposite sides AB
and CD cannot have common points be-
sides O, since otherwise one circle would
pass through three collinear points (two
vertices of the quadrangle and the point
O). Consequently, the circles drawn on
AB and CD must touch at O. Let P and
Q be the centers of these circles, respec-
tively; then O lies on the segment PQ. As
|AP| = |PO| and |CQ| = |QO|, isosceles triangles give ∠BAC = ∠PAO =
∠POA = ∠QOC = ∠QCO = ∠DCA. Thus AB and CD are parallel. Simi-
larly, the remaining sides are parallel. Thus ABCD is a rectangle; the diag-
onals of a rectangle are perpendicular only if the rectangle is a rhombus.
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FR-6. (Grade 10.) Every face of a unit cube has one of numbers −1, 0,
1 written on it in such a way that every two faces with a common edge
contain different numbers. Is it possible to form

a) a cube of size 2 × 2 × 2;

b) a cube of size 3 × 3 × 3

so that in the grids that come up on the faces, every two squares with a
common side contain different numbers and the sum of all numbers on
each face equals 0?

Answer: a) yes; b) yes.
Solution. First note that the placement of the numbers on the faces of the

unit cube is unique. Indeed, let a number x be written on some face; then
the neighboring faces contain alternately the other numbers y and z, while
the opposite face again contains x. This means that each of the numbers −1,
0, 1 occurs in one pair of opposite faces. Figures 10 and 11 show suitable
constructions (where − and + denote −1 and 1, respectively).

Remark. These constructions can be easily generalized to arbitrary (even
or odd, respectively) integral size of the cube.

FR-7. (Grade 10.) The size of the angle ABC, expressed in degrees, in a
right triangle ABC is an integer. It is known that for some positive integer
n, one can choose points K0 = A, K2, . . . , K2n on the hypotenuse AB and
points K1 = C, K3, . . . , K2n+1 = B on the leg CB in such a way that each
triangle Ki−1KiKi+1 with i = 1, . . . , 2n is isosceles with base Ki−1Ki+1. Find
all possible values of the size of angle ABC.

Answer: 2◦, 6◦, 10◦, 18◦, and 30◦.
Solution. Let ∠ABC = α (Fig. 12). Then the base angle of the last

isosceles triangle K2n−1K2nK2n+1 is α. The base angle of the second last
isosceles triangle K2n−2K2n−1K2n has the size 180◦ − (180◦ − 2α) = 2α.
The base angle of the next triangle before it, K2n−3K2n−2K2n−1, has the size
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180◦− (180◦− 4α)− α = 3α. Generally, the size of the base angle of triangle
K2n−iK2n−i+1K2n−i+2 is 180◦ − (180◦ − 2 · (i − 1)α) − (i − 2)α = iα (i = 3,
. . . , 2n). Thus the base angle of triangle ACK2 = K0K1K2 has the size 2nα.
Now in the triangle ABC we get 90◦ = ∠BAC + ∠ABC = 2nα + α, whence

α = 90◦
2n+1 . By the conditions of the problem, α must be an integer, hence

A = K0

C = K1

B = K5K2

K3

K4

α

α

2α2α

3α
3α

4α 4α

Fig. 12

2n + 1 is an odd divisor
of 90 and is greater than
1 (as a triangle cannot
have two angles of the
size 90◦). Such divisors
are 3, 5, 9, 15, and 45
that give the solutions
30◦, 18◦, 10◦, 6◦, and 2◦,
respectively.

FR-8. (Grade 11.) Find all integers that cannot be expressed as a sum of at
least three consecutive terms of some non-constant arithmetic sequence of
integers.

Answer: 1 and −1.
Solution 1. First prove that 1 and −1 are not expressible as the sum of at

least three consecutive terms of an arithmetic sequence of integers. Let a1,
a2, . . . , ak be k consecutive terms of an arithmetic sequence, where k > 3.

They sum up to s = a1+ak
2 · k. If k is odd, then s is divisible by k. If k is even,

then s is divisible by k
2 > 1. In both cases, s differs from 1 and −1.

Now prove that every integer s other than 1 or −1 is expressible as the
sum of at least three consecutive terms of an arithmetic sequence of inte-
gers. If s = 0, then s = −1 + 0 + 1. If s is different from zero and is even,
i.e., s = 2t, where t 6= 0, then −t, 0, t, 2t sum up to 2t = s. If s is odd, i.e.,
s = 2t + 1, then −t + 1, . . . , 0, 1, . . . , t − 1, t, t + 1 are consecutive terms of
an arithmetic sequence; they sum up to t + (t + 1) = 2t + 1 = s, since the
terms −t + 1 through t − 1 mutually cancel.

Solution 2. Let a1 be the first of the consecutive terms and d be the com-
mon difference of consecutive terms. The sum of n consecutive terms is

s =
2a1 + d(n − 1)

2
· n. Thus 2s = (2a1 + d(n − 1))n. If s = 1 or s = −1,

then this equality cannot hold because n > 3 divides neither 2 nor −2. If
s = 0, then choose the portion of the arithmetic progression to be −1, 0,
1. If s differs from these numbers, then let n = 2|s|, d be an arbitrary odd

number, and a1 =
1 − (n − 1)d

2
if s > 0, and a1 =

−1 − (n − 1)d

2
if s < 0.

FR-9. (Grade 11.) Find all integral solutions of the equation x3 − y3 =
3xy + 1.

Answer: (x, y) = (n + 1, n), where n is any integer, or (x, y) = (−1, 1).
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Solution. First assume x > y. Then 3xy + 1 = x3 − y3 = (x − y)(x2 +
xy + y2) > (x − y) · 3xy. Thus 3xy = x3 − y3 − 1 > 1 − 1 = 0 because
x > y. If 3xy > 0, then 3xy > 3, hence the inequality 3xy + 1 > (x − y) · 3xy
derived above implies x − y = 1. If 3xy = 0, then either x = 0 or y = 0
and in both cases the only possibility is x − y = 1 again. An elementary
check shows that all pairs (x, y) = (n + 1, n), where n is an integer, satisfy
the initial equation.

Now assume x = y. Then the equation has no solutions, since the l.h.s.
is 0 while the r.h.s. is positive.

Finally assume x < y. Then the l.h.s. of the equation is negative, show-
ing that xy is negative. Hence x < 0 and y > 0. Denoting −x = z and multi-
plying the equation by (−1) leads to new equation z3 + y3 = 3zy − 1. Then
3zy − 1 = z3 + y3 = (z + y)(z2 − zy + y2) > (z + y)zy. Hence z + y < 3,
giving z = y = 1, i.e., x = −1, y = 1, as the only possibility. It is easy to
check that this satisfies the equation.

FR-10. (Grade 11.) Let CM be the median of a triangle ABC. Prove that
the product of the circumradius of ACM and the altitude drawn from M
in ACM equals the product of the circumradius of BCM and the altitude
drawn from M in BCM.

α β

A B

C

M

U
V

Fig. 13

Solution 1. Let ∠CAB = α and ∠CBA =
β (see Fig. 13), and let r and s be the cir-
cumradii of the triangles ACM and BCM,
respectively. By the sine law in the triangle

ACM we obtain
|CM|
sin α = 2r, reducing to r =

|CM|
2 sin α . Analogously, s = |CM|

2 sin β . Let U and V

be the feet of altitudes drawn from the point
M in triangles ACM and BCM, respectively.

Then |MU| = |AM| sin α = |AB|
2 sin α. Anal-

ogously, |MV| = |AB|
2 sin β. Thus r · |MU| = |CM|·|AB|

4 = s · |MV|.
Solution 2. Let x and y be the altitudes drawn from M in the triangles

ACM and BCM, respectively. Let r and s be the circumradii of these tri-
angles, respectively. The areas of triangles ACM and BCM are equal be-
cause of |AM| = |BM| and the common altitude drawn from C. Therefore
|AC| · x = |BC| · y. Denote ∠AMC = γ. The sine law gives |AC| = 2r sin γ
and |BC| = 2s sin(180◦ − γ) = 2s sin γ. Hence 2r sin γ · x = 2s sin γ · y. As
γ 6= 0, this implies rx = sy.

Solution 3. The formulas S = abc
4R and S = ah

2 , where a, b, c are the
side lengths, R is the circumradius and h is the altitude corresponding to a,

together give Rh = bc
2 . The product of the circumradius of ACM and the

altitude drawn from M is thus
|AM| · |CM|

2
. Analogously,

|BM| · |CM|
2

for

triangle BCM. These two products are equal, since |AM| = |BM|.
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FR-11. (Grade 11.) The inhabitants of a city of naturals are natural num-
bers. Every two different inhabitants may either be or not be friends. Call
a city neighborly if every two inhabitants share a common friend if and only
if one of the numbers is divisible by the other. Can a city whose inhabitants
are precisely 1, 2, . . . , 2011 be neighborly?

Answer: no.

1

k

p

i

Fig. 14

Solution 1. Let p be a prime inhabitant of a neighborly city
(see Fig. 14). As p is divisible by 1 and p 6= 1, the inhabitants
1 and p share a common friend k. As k is divisible by 1 and
k 6= 1, the inhabitants 1 and k share a common friend i.

If i 6= p, then k is a common friend of i and p. This means
that i is divisible by p because the primality of p does not per-
mit the divisibility the other way round. If i = p, then 1 is a
common friend of k and p. This analogously means that k is
divisible by p. In both cases, the city contains a multiple of p
that is greater than p.

In the city with inhabitants 1, . . . , 2011, the prime inhabitant 2011 has no
larger multiples. Hence this city cannot be neighborly.

Solution 2. Suppose that this city is neighborly. Choose arbitrary 12
prime inhabitants (for instance, the first 12 primes). Each of them shares a
common friend with 1; let these friends be a1, a2, . . . , a12. These numbers are
all different since otherwise one of them would be a common friend to two
prime numbers. W.l.o.g., assume a1 < a2 < . . . < a12. As 1 is a common
friend of all them, each of a2, . . . , a12 must be divisible by the previous term.
This implies that a12 > 212 = 2048, a contradiction.

Remark. The use of primality of 2011 in Solution 1 can be replaced with
the application of Chebyshev’s theorem, choosing p arbitrarily in such a
way that 1005 < p < 2010.

FR-12. (Grade 12.) Find the last digit of the number 11 + 22 + 33 + . . . +
20112011.

Answer: 8.
Solution. Consider the sum modulo 2 and modulo 5. As powers of odd

numbers are odd and powers of even numbers are even, the number of
odd summands equals the number of odd elements in set {1, . . . , 2011}.
As there are an even number of odd elements in this set, the sum given in
the problem is even. Concerning modulo 5, note that 0 to every power is
congruent to 0 and a4 is congruent to 1, whenever 1 6 a 6 4. Thus for all a
such that 1 6 a 6 20, (a + 20)a+20 ≡ aa+20 = aa · a20 = aa · (a4)5 ≡ aa · 1 =
aa (mod 5). Hence the remainders modulo 5 repeat periodically with the
period 20. As there are 100 full periods and 100 is divisible by 5, the sum of
the last 2000 summands is congruent to 0 modulo 5. It remains to compute
the remainders of the first 11 summands: 11 = 1, 22 = 4, 33 = 27 ≡ 2,
44 ≡ 40 = 1, 55 ≡ 01 = 0, 66 ≡ 12 = 1, 77 ≡ 23 ≡ 3, 88 ≡ 30 = 1,
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99 ≡ 41 = 4, 1010 ≡ 02 = 0, 1111 ≡ 13 = 1. Hence the overall sum is
congruent to 3 modulo 5. Consequently, the last digit of this sum is 8.

FR-13. (Grade 12.) Does there exist a positive real number C such that the
inequality

x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 6 C(x1x2 + x2x3 + x3x4 + x4x1)

holds for arbitrary positive real numbers x1, x2, x3, x4?
Answer: no.
Solution. For simplicity, denote A = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 +

x3x4 and B = x1x2 + x2x3 + x3x4 + x4x1. Choose x1 = x3 = u and x2 =
x4 = 1. Then A > x1x3 = u2 and B = 4u. Hence A

B > u
4 . As u can be

arbitrarily large, no constant C such that A 6 CB exists.

FR-14. (Grade 12.) In a rectangle ABCD we have |AB| = a and |BC| = b,
where a > b. Let E be a point in the interior of side AB such that there is
exactly one possibility to choose points F, G, H on the sides BC, CD, DA,
respectively, in such a way that EFGH is a rectangle, too. Find the ratio of
the areas of rectangles EFGH and ABCD.

Answer: 1
2 .

A B

CD

E

F

G

H
O

Fig. 15

Solution. The rectangles ABCD and EFGH
have a common center O (see Fig. 15). As rect-
angles are cyclic quadrangles, the point F lies
on the circle with center O and radius |OE|.
This circle intersects the side BC at two points
symmetric w.r.t. the midpoint of the side. To
have exactly one point common to the circle
and the side, the side must be tangent to the
circle and F must be the midpoint of BC. Anal-
ogously, H must be the midpoint of DA. In tri-
angle EFH, the side HF has length a and the

corresponding altitude is b
2 , giving 1

2 · a · b
2 = ab

4 as the area of the triangle.
The triangle GFH has the same area. Hence the area of rectangle EFGH is

2 · ab
4 = ab

2 that makes up a half of the area ab of the rectangle ABCD.

FR-15. (Grade 12.) Ants has three pencils, each of a different color. In how
many ways can he paint the faces of a regular octahedron in such a way that
faces with a common edge always have different colors? Colorings that can
be obtained from each other via rotations of the octahedron are considered
the same.

Answer: 15.
Solution. One color can occur at most 4 times (at most twice among

the faces adjacent to either one of some two opposite vertices). Thus the
possible numbers of colors are 4, 4, 0 or 4, 3, 1 or 4, 2, 2 or 3, 3, 2.
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i) Case 4, 4, 0. There are 3 possibilities to choose two colors from the
three. After that, there is only one possibility to paint the octahedron. Thus
there are 3 possibilities to paint.

ii) Case 4, 3, 1. Ordering the 3 colors can be done in 6 ways. After that,
there is only one possibility to paint the octahedron, since the color used 4
times must occur twice among the faces adjacent to one vertex and twice
among the faces adjacent to the opposite vertex. The remaining two colors
can be deployed in principle in only one way. Thus there are 6 possibilities
to paint.

iii) Case 4, 2, 2. Choosing the color that is used 4 times can be done in
3 different ways. After that, the octahedron can be painted in only 1 way,
since after 4 faces have been painted with the same color, faces with either of
the other colors must meet at the same vertex. Thus there are 3 possibilities
to paint.

iv) Case 3, 3, 2. Choosing the color that is used only twice can be done
in 3 ways. If the faces painted with this color met at a common vertex V,
the faces adjacent to the opposite vertex would be painted alternately with
the other two colors. But then the remaining two faces adjacent to V would
have to be painted with the same color, that contradicts the case assump-
tion. Hence the color that occurs twice is used on a pair of opposite sides.
The other colors occur alternately on the surface formed by the remaining
six faces. Thus there are 3 possibilities to paint.

Consequently, the number of all colorings is 3 + 6 + 3 + 3 = 15.

FR-16. (Grade 12.) Inside a regular 2n-gon, an arbitrary point is chosen
and connected to every vertex of the 2n-gon. The triangles obtained are
colored alternately black and white so that triangles with a common side
are of different color. Prove that the sum of the areas of all white triangles
equals the sum of the areas of all black triangles.

Solution 1. If n = 2, i.e., the 2n-gon is a square, then the claim holds
because the base sides of white triangles are the opposite sides of the square
and the altitudes lie on the same line, so the total area of white triangles is a
half of the area of the square. Assume in the following that n > 2. Consider
the regular n-gon whose sides are obtained by prolonging all sides of the
2n-gon that belong to white triangles (see Fig. 16). Join the point chosen
inside the initial 2n-gon with all vertices of the n-gon. The altitude drawn in
any white triangle coincides with the altitude drawn in the corresponding
triangle in the n-gon, while the ratio of the corresponding base sides equals
the ratio of the side length of the 2n-gon and the side length of the n-gon,
denote it by c. Thus the total area of white triangles is cSn, where Sn is the
area of the n-gon. Analogously, the total area of black triangles is cSn, too.

Solution 2. The claim of the problem is equivalent to the statement that
the sum of the altitudes of black triangles drawn to the sides that coin-
cide to the sides of the 2n-gon is equal to that of white triangles. Let O be
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the center of the 2n-gon, A be the point chosen inside, α be the angle be-
tween line OA and the line perpendicular to a side, and l be the distance
between O and any side of the 2n-gon (see Fig. 17). Then the altitude of
the corresponding triangle is l − |OA| cos α. The altitude of the next tri-
angle of the same color can be expressed similarly but α is replaced with

α + 360◦
n . Thus the sum of all altitudes of the triangles of the same color is

nl − |OA| · (cos α + cos(α + 360◦
n ) + . . . + cos(α + (n−1)360◦

n )). To show that

the sum inside parentheses equals 0, multiply the sum by sin 360◦
2n . Since

cos(α + k·360◦
n ) sin 360◦

2n = 1
2 (sin(α +

(k+ 1
2 )·360◦

n )− sin(α +
(k− 1

2 )·360◦

n )), a tele-

scoping sum emerges and after reduction one obtains − sin(α − 360◦
2n ) +

sin
(

α +
(n− 1

2 )·360◦

n

)

= 0. Hence for both colors, the sum of the altitudes

of all triangles of this color is nl.

Remark. The sum cos α + cos(α + 360◦
n ) + . . . + cos(α + (n−1)·360◦

n ) in So-
lution 2 can also be computed as follows. Denote z = cos α + i sin α, where i

is the imaginary unit and let zk = cos k·360◦
n + i sin k·360◦

n , k = 0, 1, . . . , n − 1.
Then the sum under consideration is the real part of the complex number
z · z0 + z · z1 + . . . + z · zn−1. Thus z · z0 + z · z1 + . . . + z · zn−1 = z · (z0 +

z1 + . . . + zn−1) = z · (z0
1 + z1

1 + z2
1 + . . . + zn−1

1 ) = z · zn
1−1

z1−1 = z · 0 = 0,

whence the sum under consideration is equal to 0.
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IMO Team Selection Contest

First day

TS-1. Two circles lie completely outside each other. Let A be the point
of intersection of internal common tangents of the circles and let K be the
projection of this point onto their external common tangent. The tangents,
different from the common tangent, to the circles through point K meet the
circles at M1 and M2. Prove that the line AK bisects the angle M1KM2.

Solution 1. Let L1 and L2 be the points of tangency of the external com-
mon tangent of the circles, N1 and N2 be the points of tangency of an in-
ternal common tangent, and O1 and O2 be the centers of the two circles
(see Fig. 18). As all the lines O1L1, AK, and O2L2 are perpendicular to the

line L1L2, they are parallel to each other and thus |L1K|
|L2K| = |O1 A|

|O2 A| . The trian-

gles O1AN1 and O2AN2 are similar because they are both right-angled and

have the same vertical angles. Thus,
|O1 A|
|O2 A| = |O1 N1|

|O2 N2| = |O1 L1|
|O2 L2| . Therefore, the

right-angled triangles O1L1K and O2L2K are similar due to proportionality
of their legs. Hence, ∠L1KO1 = ∠L2KO2. As ∠L1KM1 = 2∠L1KO1 and
∠L2KM2 = 2∠L2KO2, we also get that ∠L1KM1 = ∠L2KM2. Together with
the equality ∠L1KA = ∠L2KA = 90◦ this implies ∠M1KA = ∠M2KA.

Solution 2. Both of the circles appear at the same angle, when viewed
from the point A. To solve the problem, it is enough to show that both of the
circles also appear at the same angle, when viewed from the point K. Let the
centers of the circles have the coordinates O1(a1, b1) and O2(a2, b2) and let
r1 and r2 be the radii of the circles. The two circles appear at the same angle
from the point P(x, y) if and only if r1

|O1P| = r2
|O2P| , i.e., r1√

(x−a1)2+(y−b1)2
=

r2√
(x−a2)2+(y−b2)2

. Simple algebra shows that this equation is equivalent to

(r2
1 − r2

2)x2 + (r2
1 − r2

2)y2 + c1x + c2y + c3 = 0, where c1, c2, and c3 are some

O1 O2

L1

L2

M1
M2

N1

N2

A

K

Fig. 18

23



constants. If r1 = r2, then the statement clearly holds. If r1 6= r2, then the
last equation is that of a circle. Point A as well as the point D of intersection
of the external common tangents both lie on that circle, and from symmetry,
the diameter of that circle is AD. As AK is perpendicular to the external
common tangent of the circles, the point K also lies on that circle.

Remark. The statement would hold even if we swapped the internal and
external tangents of the circles and considered angle M1KM2 as the angle
between the lines KM1 and KM2 instead.

TS-2. Let n be a positive integer. Prove that for each factor m of the num-
ber 1 + 2 + . . . + n such that m > n, the set {1, 2, . . . , n} can be partitioned
into disjoint subsets, the sum of the elements of each being equal to m.

Solution. For every positive integer k, denote Sk = {1, 2, . . . , k} and

sk = 1 + 2 + . . . + k = k·(k+1)
2 . Prove the claim by induction: assume there

exists the required partitions of S1, . . . , Sn−1 and prove the same for Sn. Fix
an arbitrary m such that m | sn, m > n.

First assume m > 2n. Let d = sn
m . To construct d disjoint subsets of Sn

with equal sum, partition the set {n, n − 1, . . . , n − 2d + 1} into subsets
Mi = {n + 1 − i, n − 2d + i}, where i = 1, . . . , d. As m > 2n implies

n + 1 > 4d, one gets
sn−2d

d = (n−2d)·(n+1−2d)
2d >

(n−2d)·2d
2d = n − 2d. Note

also that d | (n−2d)·(n+1−2d)
2 , since (n − 2d) · (n + 1 − 2d) ≡ n(n + 1) ≡ 0

(mod 2d). Hence by the induction hypothesis, there exist disjoint subsets
L1, . . . , Ld of Sn−2d with equal sum. Taking Mi ∪ Li for each i = 1, . . . , d
forms the desired partition of Sn.

Now assume n 6 m < 2n. If m = n, then the task is trivial (n must be
odd to be a divisor of sn, so take sets {i, n − i}, i = 1, 2, . . . , n−1

2 , and {n}).
If m > n, then form the subsets Mi = {m − 1 − n + i, n + 1 − i} of the set
{n, n − 1, . . . , m − n} for i = 1, . . . , n − ⌈m−1

2 ⌉, the sum of the elements of
each being m. The solution is complete if the remaining numbers in Sn can
be divided into sets, the sum of the elements of each being also m.

If m is odd, then the set of remaining numbers is {1, 2, . . . , m − n − 1}.
For m = n + 1, this set is empty and the partition is trivial, so assume

m > n + 1. As m > m − n − 1 and m | (m−n−1)·(m−n)
2 (the latter following

from (m − n − 1) · (m − n) ≡ (n + 1)n ≡ 0 (mod m) and the parity of m),
the desired partition exists by the induction hypothesis.

If m is even, then the set of remaining numbers of Sn also includes m
2 .

But m
2 | sm−n−1 again by m | (m − n − 1) · (m − n). The inequality m < 2n

implies m
2 < n, so also m

2 > m − n > m − n − 1. Here, m = n + 1 is
impossible, since n + 1 | sn implies 2 | n and 2 6 | n + 1. Hence the induction
hypothesis gives the existence of a partition of Sm−n−1 into subsets, the sum
of the elements of each being m

2 . The number of these subsets is
sm−n−1

m/2 =
(m−n−1)·(m−n)

m = m − 2n − 1 + 2 · (n+1)n
2m , which is odd. Together with the

number m
2 , the subsets can be grouped by two to form the desired partition.
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TS-3. Does there exist an operation ∗ on the set of all integers such that
the following conditions hold simultaneously:

(1) for any integers x, y, z, (x ∗ y) ∗ z = x ∗ (y ∗ z);

(2) for any integers x and y, x ∗ x ∗ y = y ∗ x ∗ x = y?

Answer: yes.
Solution. Define an operation ⊕ on the set of all non-negative integers,

which maps two non-negative integers a and b to a non-negative integer
a ⊕ b, such that for all i = 0, 1, . . . , (a ⊕ b)i = (ai + bi) mod 2, where ni

stands for the binary digit corresponding to 2i in the binary representa-
tion of n. This operation satisfies condition (1) for all non-negative integers
because addition modulo 2 satisfies it. The operation also satisfies condi-
tion (2) because if x, y ∈ {0, 1}, then (x + x + y) mod 2 = y mod 2 =
(y + x + x) mod 2. As the set of non-negative integers as well as the set
of all integers are countable, there exists one-to-one correspondence f be-
tween these sets (e.g. mapping a non-negative integer x to the integer

(−1)x⌊ x+1
2 ⌋). Every integer can therefore be uniquely expressed in the form

f (n), where n is a non-negative integer. Therefore we can define the opera-
tion ∗ by the formula f (x) ∗ f (y) = f (x ⊕ y). Following from the construc-
tion, both conditions (1) and (2) still hold.

Remark. This problem was inspired by problem 5 on Baltic Way 2006.

Second day

TS-4. Let a, b, c be positive real numbers such that 2a2 + b2 = 9c2. Prove
that

2c

a
+

c

b
>

√
3.

Solution 1. Using the AM-GM inequality for three terms twice, one gets

2c

a
+

c

b
=

(2b + a)c

ab
=

(2b + a)
√

2a2 + b2

3ab
=

(b + b + a)
√

a2 + a2 + b2

3ab
>

>
3

3
√

b2a
√

3
3
√

a4b2

3ab
=

3
√

3
3
√

b2a · a2b

3ab
=

3
√

3ab

3ab
=

√
3.

Solution 2. Using HM-QM inequality for a, a, b gives

3

2

a
+

1

b

=
3

1

a
+

1

a
+

1

b

6

√

a2 + a2 + b2

3
=

√

2a2 + b2

3
=

√

9c2

3
=

√
3c.

Thus
(

2

a
+

1

b

)

· c >
3√
3

=
√

3,

which implies the desired inequality.
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Solution 3. By AM-GM for two terms,

(2c

a
+

c

b

)2
=

(2b + a)2c2

a2b2
=

(2b + a)2(2a2 + b2)

9a2b2
=

=
((a2 + b2) + 4ab + 3b2)(a2 + (a2 + b2))

9a2b2
>

(6ab + 3b2)(a2 + 2ab)

9a2b2
=

=
(2a + b)(a + 2b)

3ab
=

2a2 + 5ab + 2b2

3ab
>

4ab + 5ab

3ab
= 3.

Solution 4. The square of the l.h.s. of the desired inequality is
(2c

a
+

c

b

)2
=

(2b + a)2(2a2 + b2)

9a2b2
=

1

9

(

2 +
a

b

)2 (

2 +
b2

a2

)

.

Denoting a
b = x, the desired inequality reduces to 1

9 (2 + x)2(2 + 1
x2 ) > 3,

which is equivalent to (2 + x)2(2x2 + 1) > 27x2. This in turn is equivalent
to 2x4 + 8x3 − 18x2 + 4x + 4 > 0, that is 2(x − 1)2(x2 + 6x + 2) > 0 after fac-
torization. This inequality holds, since on positive arguments the quadratic
polynomial x2 + 6x + 2 is positive.

Remark. There are also plenty of solutions via derivative.

TS-5. Prove that if n and k are positive integers such that 1 < k < n − 1,
then the binomial coefficient (n

k) is divisible by at least two different primes.
Solution 1. Assume w.l.o.g. that n > 2k (if n < 2k, then interchange the

roles of k and n − k). Let p be an arbitrary prime number. Consider the
numbers that remain into the numerator of the expression

(

n

k

)

=
n · (n − 1) · . . . · (n − k + 1)

k · (k − 1) · . . . · 1

after reducing all factors by the highest power of p by which they are di-
visible. Suppose that some two of the k factors resulting after this step are
equal. Then the corresponding initial factors are of the form s · pi and s · pj,
where i > j. But then n > s · pi > p · s · pj > p · (n − k) > 2 · (n − k),
which contradicts the assumption n > 2k. Hence the k new factors are pair-
wise different. As 1 < k < n − 1, the numerator initially contains at least
two consecutive numbers, at least one of which is not divisible by p. This
number does not change in the process described above. By the assumption
n > 2k, this number is greater than k. Consequently, the product remaining
in the numerator after elimination of powers of p is greater than the de-
nominator k · (k − 1) · . . . · 1. This means that the powers of p in the original
numerator cannot be completely cancelled out with the denominator. So
the canonical representation of (n

k) cannot consist of a power of p only.
Solution 2. Suppose that for some n and k,

(

n

k

)

=
n · (n − 1) · . . . · (n − k + 1)

k · (k − 1) · . . . · 1
= pt,

where p is a prime number and t is some positive integer. Let m be a num-
ber in {n, n − 1, . . . , n − k + 1}, in the canonical representation of which
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the exponent of p is the largest. Then the exponent of p in the canonical
representation of n, n − 1, . . . , m + 1 coincides with that in the canonical
representation of n − m, n − m − 1, . . . , 1, respectively. Similarly, the expo-
nent of p in the canonical representation of m − 1, . . . , n − k + 1 coincides
with that in the canonical representation of 1, . . . , m − 1 − n + k, respec-
tively. Consequently, the exponent of p in the canonical representation of
the product n(n − 1) . . . (m + 1)(m − 1) . . . (n − k + 1) equals to that in the
canonical representation of the product (n − m)! (m − 1 − n + k)!. Since

k!

(n − m)! (m − 1 − n + k)!
= k · (k − 1)!

(n − m)! (k − 1 − n + m)!
= k ·

(

k − 1

n − m

)

is clearly an integer, the exponent of p in the canonical representation of
(n − m)! (m − 1 − n + k)! does not exceed that in the canonical representa-
tion of k!. Hence, the exponent of p in the canonical representation of (n

k)
does not exceed that in the canonical representation of m. As the assump-
tions of the problem imply (n

k) > (n
2) > n > m, this leads to a contradiction.

Remark. More straightforward solutions can be presented using either
Legendre’s formula or Kummer’s theorem.

TS-6. On a square board with m rows and n columns, where m 6 n, some
squares are colored black in such a way that no two rows are alike. Find the
biggest integer k such that for every possible coloring to start with one can
always color k columns entirely red in such a way that no two rows are still
alike.

Answer: n − m + 1.
Solution 1. Prove that if m 6 n, one of the columns can always be colored

red. Then, when excluding this column, we can continue the process until
the number of columns is smaller than the number of rows, i.e. n − m + 1
times. Suppose we cannot color a single column red such that no two rows
still appear alike. Then, for every column there are at least two rows that
differ by only one square in that column. Consider those two rows for every
column. Now consider a graph with its vertices being the rows and its
edges being the pairs of rows of interest. As this graph has at least as many
edges as vertices, the graph contains a cycle. Consider an arbitrary row (i.e.
vertex) x of the cycle. Then the row it is followed by differs from row x
exactly by one square, assume this square is located at the column y. Every
next row differs from the previous one in exactly one column. As all these
columns differ from column y, all the other edges of this cycle correspond to
passing from one row to another such that the square in column y remains
the same. Therefore, the square in column y remains the same in all the
rows after x and it has to remain the same at the last passage which takes
us back to the row x. This, however, means that all squares in row x have
to be of the same color as the square at the row after x, a contradiction.

In general, no more rows can be colored red. Assume that all the squares
are colored black to start with, apart from the diagonal of an m × m-sub-
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squareboard. If we color n − m + 2 columns red, there are always at least
2 columns which lie in that subsquareboard. But this means that we will
over-color the only two white squares in two rows and thus we end up
with two equally colored rows.

Solution 2. Consider the columns of the squareboard one by one. The
first column divides the set of all the rows into two subsets: one of them
consists of the rows which have the square at the first column white and
the other consists of those rows that have their first square black. If the first
column has all its squares white or all its squares black, then we can color
it red. Similarly, for every next column divide the subsets even further de-
pending on whether there is a black or a white square in that row in that
column. If no subsets are divided further at a particular step, we can color
that column red. Therefore, for all columns, either the number of subsets in-
creases by at least one or this column is colored red. As we started off with
one set and ended up with m subsets each containing one row only, there
has to be no more than m − 1 columns that were not colored red and thus
at least k = n − m + 1 that were. All these rows are still different from each
other because we colored only those columns which had no new informa-
tion about the differences between rows compared with previous columns.

Similarly to Solution 1 we can show that there always exists a coloring
for which no more columns can be colored red.

Solution 3. Prove by induction on the number of rows that we can always
color at least k = n − m + 1 columns red. If m = 1 then we can color all
the columns red, i.e. k = n = n − m + 1. Assume that for m = l we can
color at least n − l + 1 columns red such that no two rows appear alike.
Assume now that m = l + 1. Following from the induction hypothesis we
can color at least n − l + 1 columns red such that the first l rows remain
different. If after that coloring process the last row is different from the rest,
all the conditions required are satisfied and we can color at least n − m + 2
columns red. If the last row however is similar to any of the rows above it
(there can be only one of those) then as these rows were all different to start
with, there should exist a column at which the last row and the row that
appears similar after coloring actually differ. If we do not color this column,
all the rows will appear different and we can color n − m + 1 columns red.

Similarly to Solution 1 we can show that there always exists a coloring
for which no more columns can be colored red.
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