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Mathematics Contests in Estonia

The Estonian Mathematical Olympiad is held annually in three rounds: at
the school, town/regional and national levels. The best students of each
round (except the final) are invited to participate in the next round. Every
year, about 110 students altogether reach the final round.

In each round of the Olympiad, separate problem sets are given to the
students of each grade. Students of grade 9 to 12 compete in all rounds,
students of grade 7 to 8 participate at school and regional levels only. Some
towns, regions and schools also organize olympiads for even younger stu-
dents. The school round usually takes place in December, the regional
round in January or February and the final round in March or April in
Tartu. The problems for every grade are usually in compliance with the
school curriculum of that grade but, in the final round, also problems re-
quiring additional knowledge may be given.

The first problem solving contest in Estonia took place already in 1950.
The next one, which was held in 1954, is considered as the first Estonian
Mathematical Olympiad.

Apart from the Olympiad, open contests are held twice a year, usually in
October and in December. In these contests, anybody who has never been
enrolled in a university or other higher education institution is allowed to
participate. The contestants compete in two separate categories: the Juniors
and the Seniors. In the first category, students up to the 10th grade can
participate; the other category has no restriction. Being successful in the
open contests generally assumes knowledge outside the school curriculum.

Based on the results of all competitions during the year, about 20 IMO
team candidates are selected. IMO team selection contest for them is held in
April or May, lasting two days; each day, the contestants have 4.5 hours to
solve 3 problems, similarly to the IMO. All participants are given the same
problems. Some problems in our selection contest are at the level of diffi-
culty of the IMO but somewhat easier problems are usually also included.

The problems of previous olympiads are available at the Estonian Math-
ematical Olympiad’s website http://www.math.olympiaadid.ut.ee/eng.

Besides the above-mentioned contests and the quiz “Kangaroo” other
regional and international competitions and matches between schools are
held as well.

%

This booklet presents the problems of the open contests, the final round
of national olympiad and the team selection contest. For the open contests
and the final round, selection has been made to include only problems that
have not been taken from other competitions or problem sources and seem
interesting enough. The team selection contest is presented entirely.



Selected Problems from Open Contests

O1. (Juniors.) Find all four-digit numbers, which after deleting any one
digit turn into a three-digit number that is a divisor of the original number.

Answer: 1100, 1200, 1500, 2200, 2400, 3300, 3600, 4400, 4800, 5500, 6600,
7700, 8800, 9900.

Solution. Let abcd be a such number. Since abed is divisible by abc, we
have d = 0. Since abcd = abc0 is divisible by abd = ab0, we have ¢ = 0.
Since abcd = ab00 is divisible by acd = a00 and by bcd = b00, the number
ab is divisible by a and b. So b = ax and 10a = by with integer x and y.
Therefore 10a = axy, whence xy = 10. If x = 1, y = 10, then a = b, which
gives 9 possible numbers 1100, 2200, 3300, 4400, 5500, 6600, 7700, 8800, 9900.
If x =2,y = 5, then 2a = b, which gives 4 possibilities 1200, 2400, 3600,
4800. If x = 5, y = 2, then 52 = b, which gives 1 number 1500. The case
x = 10, y = 1is impossible, since 2 and b must be one-digit numbers.

O2. (Juniors.) Find the minimum number of colours required to paint all
points with integer coordinates in the plane in such a way that no two
points which are exactly five units apart have the same color.

Answer: 2.

Solution. Obviously at least 2 colors are necessary. Color all points (x,y)
with even sum of coordinates with one color and all other points with an-
other color. All points that are at distance 5 from (x,y) are (x £4,y £+ 3),
(x+3;y£4), (x£5,y), (x,y £5). In each case, the sum of coordinates has
the parity different from that of (x, y). Therefore they are colored differently
from (x,y).

O3. (Juniors.) A hiking club wants to hike around a lake along an exactly
circular route. On the shoreline they determine two points, which are the
most distant from each other, and start to walk along the circle, which has
these two points as the endpoints of its diameter. Can they be sure that,
independent of the shape of the lake, they do not have to swim across the
lake on any part of their route?

Answer: No.

Solution. Suppose the shape of the lake is an equilateral triangle. Then
the two points which are the most distant from each other are two vertices
of the triangle. The circle, which has these two points as the endpoints of
its diameter, does not cover the whole triangle, because the distance of the

third vertex from the center of the circle is \/75 of the length of the side of the
triangle, but the radius of the circle is only 3 of this length.

O4. (Juniors.) Two circles ¢ and ¢’ with centers O and O’ lie completely
outside each other. Points A, B, and C lie on the circle ¢ and points A’,
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Fig. 1

B’, and C’ lie on the circle ¢’ so that segment AB || A’B’, BC || B'C’, and
L/ABC = ZA'B'C’. The lines AA’, BB/, and CC’ are all different and inter-
sect in one point P, which does not coincide with any of the vertices of the
triangles ABC or A’B’C’. Prove that ZAOB = ZA'O'B'.

Solution. The triangles ABP and A’B'P are similar, because their corre-

sponding sides are parallel (Fig. 1). Hence Hﬁg,l‘ = ”g,l;". Likewise the tri-
angles BCP and B/C’P are similar, hence % = %. Thus % = %,

and since ZABC = ZA’B'C’, the triangles ABC and A’B’C’ are also similar.
From the equality of the angles ACB and A’C’'B’ the equality of the central
angles AOB and A’O’B’ now follows.

Remark. Figure 1 corresponds to the case when the vectors AB and ﬁ
have the same direction. If they have the opposite directions, then the figure
is different (the intersection point P lies on the segments AA’, BB’ and CC’)
but the argument is still correct.

O5. (Juniors.) Let n be a positive integer and ay, ..., ay, be real numbers
in [f%, %} . Leaving out any one of the numbers, the sum of the remaining
2n — 1 numbers is always an integer. Prove thata; = ... = ay,,.

Solution. Assume that there exist a4; and a; which are not equal. Let
S = a;+...+ay. Since S —a; and S — a; are integers, their difference
(S —a;) — (S —aj) = a; —a; is also an integer. Since a; — a; # 0, and they
belong to [—%, %} , their difference can be only +1, this happens when 4;

and a; are Jand —1 in any order. Let a; be any of the given numbers. Since
(S —a;) — (S — a;) = ax — a; is an integer, a; must also be either } or —1.
Hence all numbers a; are either % or — % It follows that the sum of any two
numbers a; and aj is an integer. As we have an even number of them, the
sum of all the numbers S is also an integer. But then S — a; = S £ 1 cannot
be an integer, a contradiction. Therefore all numbers a; must be equal.



06. (Juniors.) Is it possible that the perimeter of a triangle whose side
lengths are integers, is divisible by the double of the longest side length?

Answer: no.

Solution. Let the side lenghts of the triangle be integers a, b, c. Without
loss of generality we may assume that ¢ > a and ¢ > b. Suppose that the
perimeter of the triangle a + b + c is divisible by double of the longest side
length 2¢. Since 0 < a4+ b+ ¢ < 3c < 2 - 2¢, the perimeter a + b + ¢ can be
divisible by 2c only in the case when a +b + ¢ = 2c. But thena +b = ¢,
which violates the triangle inequality a + b > c.

O7. (Seniors.) For any positive integer 7 let a, be the largest power of 2 that
divides n (e.g. a2011 = 1, axp12 = 4). Prove that for any positive integers i
and j with i < j, the sum ul + L 4., .+ Lisa fractional number.

i1 aj
Solution. First prove that the largest power of 2 among the numbers a;,
aiy1, ..., 4j is unique. Let 2° be the largest of the numbers a;, 4,44, ..., 4;.

If there were k and [ with i < k < [ < jsuch that ay = a; = 2°, then they
must be of the form k = 2°u and | = 2%v, where u and v are odd numbers.
Since k < I, wehaveu < vand u +1 < v. Since u + 1 is even, the num-
ber m = 25(u + 1) has a divisor 2°*1, and k < m < I, which contradicts
the choice of s. Thus the largest power of 2 appears only once among the
numbers a;, aj1, .., aj. Converting the fractions to the common denomi-
nator the fraction with the largest denominator gives 1in the numerator, all
others give a positive power of 2, i.e. an even number. Consequently the
numerator is odd and cannot cancel with the denominator.

O8. (Seniors.) Let a be a real number, 0 < a < 1. Prove that for any
nonnegative integer 1 the inequality (1 + 1)a < n + a"*! holds.

Solution 1. The inequality is equivalent to the inequality na —n < a"*! —
a, or the inequality n(a — 1) < a(a—1)(a" ' +a"2+...+1). Ifa = 1,
then the inequality obviously holds. If 2 < 1 thena —1 < 0, and dividing
both sides of the inequality by 2 — 1 we get an equivalent inequality n >
a(@ ' 4a" 2+, . +1),orn>a"+a" 1 +... +a. Sincea < 1,in the last
sum all terms are less than 1, hence the sum does not exceed n.

Solution 2. If n = 0 then the inequality is a < a, which obviously holds.
Suppose that the inequality holds for n = k and prove that it then holds
for n = k + 1 as well. From the inequality (k + 1)a < k + a**! we get the
inequality (k +2)a < k + 1+ a**2 by adding the inequality a < 1+ ak*2 —
a**1. The last inequality is equivalent to the inequality (1 —a)(1 —a**1) >
0, which obviously holds, because both factors are nonnegative.

Solution 3. If a = 0, then the inequality is 0 < n, which obviously holds.
If a > 0, then AM-GM gives

14+ ...4+1+a"t1 S

n+1 -
which is obviously equivalent with the original inequality.

1-...-1-amtl,
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Remark 1. There are also solutions via derivative.
Remark 2. Actually the inequality holds for all nonnegative real numbers
a and n.

09. (Seniors.) Let ABC be a triangle with median AK. Let O be the circum-
center of the triangle ABK.

a) Prove that if O lies on a midline of the triangle ABC, but does not
coincide with its endpoints, then ABC is a right triangle.

b) Is the statement still true if O can coincide with an endpoint of the
midsegment?

Solution. a) Let L and M be the midpoints of the sides CA and AB,
respectively. If O lies on the segment KM (Fig. 2), then the segment KM
and the perpendicular bisector of AB have two different common points O
and M, hence KM is the perpendicular bisector of AB. Since KM is parallel
to AC and is perpendicular to AB, the angle at vertex A must be right. If
O lies on the segment LM (Fig. 3), then we get similarly that the angle at
vertex B must be right. If O lies on the segment KL (Fig. 4), then on one
hand ZABC is acute, because OK and MB are perpendicular to MO, the
perpendicular bisector of AB, and |OK| < |LK| = |MB|. On the other
hand, ZABK must be obtuse, since the circumcenter O of the triangle ABK
lies outside of the triangle, a contradiction. Thus this case is not possible.

b) If the triangle ABC is equilateral, then the median AK is also the alti-
tude and ABKis a right triangle with the hypotenuse AB. The circumcenter
O of the last triangle is the midpoint of AB, i.e. an endpoint of a midseg-
ment of the triangle, but ABC is not a right triangle.

010. (Seniors.) Determine the least number of the dark squares
which remain visible if one covers the n X n squared paper with E
2 x 2 squares shown on the figure (they can be turned) so that all

of the squares on the paper are covered at least once?

Answer: n.

Solution. No matter how we cover the squared paper, there must be at
least one dark square in each column, because on the last figure we put
on this column one dark square always remains visible. Hence there must
always be at least n dark squares visible. On the other hand, we can leave

7



exactly n dark squares visible by covering the paper as follows. First put
one figure on the lower left corner of the paper. Then put two figures so
that they cover the dark squares of the first figure and their dark squares
form a diagonal of length 3. Then add 3 figures so that they cover the dark
squares of the previous figures and their dark squares form a diagonal of
length 4. Repeat this until we have a diagonal of length n from one corner
of the paper to the opposite corner. To cover all the squares repeat the same
steps starting from the upper right corner of the paper.

O11. (Seniors.) The teacher drew a 3 x 3 table in Juku’s exercise book and
wrote a number in every position of the table. Then he gave Juku the fol-
lowing task.

1) Turn the next page and draw a similar table. Write in the first row
the numbers obtained by subtracting the numbers in the third row of
the corresponding column from the numbers in the second row of the
corresponding column in the previous table. Similarly, the numbers
in the second and third row are obtained as differences of the third
and the first, and the first and the second row.

2) Turn the next page and draw a new table. Write in the first column
the numbers obtained by subtracting the numbers in the third column
from the numbers in the second column in the corresponding row in
the previous table. Similarly, the numbers in the second and third
column are obtained as differences of the third and the first, and the
first and the second column.

Repeat in turns steps 1 and 2 until you reach a table where all the numbers
are zeroes. Juku has reached the end of the third page and has not yet
reached the table with all zeroes in it. Prove that his task never ends.

Solution. First note that after step 1 we get a table where the column
sums of the table are 0, and after step 2 we get a table where the row sums
of the table are 0. Suppose that after some steps we reach the table with all
zeroes in it. By symmetry we can consider the case where we get this table
after step 2. Then the table on the previous step was

a a a
b b b
c ¢ ¢

where at least one of the numbers a, b, c is not zero. This table was obtained
after step 1, hence a + b + ¢ = 0. The table on the previous step was

d e f
d—c e—c f—c
d+b g+b f+b
This was also written by Juku, because he computed at least 2 tables. Since
this table was obtained after step 2, we must haved + e+ f =d —c+e —
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c+f—c=d+b+g+b+ f+b=0. From the first equality it follows that
¢ = 0, from the equality of the first and third expression b = 0, and since
a+b+c=0,wehavea = 0, which contradicts the assumption that at least
one of the numbers a, b, c is not zero.

0O12. (Seniors.) Prove that for any positive integer n the sum of the first n
primes is greater than n2.

Solution. First notice that the n-th prime p, satisfies the inequality p, >
2n — 1. Indeed, the claim holds for the first prime p; = 2. Since all other
primes are odd and there is exactly 7 — 1 odd numbers between 2 and 2n,
there are at most n prime numbers less or equal to 2n — 1, hence p, > 2n —
1. Now consider the sum of the # first primes P = p; + pp + ... + pu. Since
px > 2k —1 for any k, and additionally p; = 2 > 1, the sum P is strictly
greater than the sum of n first odd numbers S = 1+3+ ... +2n -1 =
=(12-0)+(2>2—12)+...+ (">~ (n—1)?) =n®. So P > S = n?.

O13. (Seniors.) Find all triples (a,b, c) of positive integers such that

% 4 b 4 ¢ = 3abc.

Answer: (1,1,1), (1,2,3), (1,3,2),(2,1,3), (3,1,2), (2,3,1), (3,2,1).

Solution. First assume a > 2,b > 2, ¢ > 2. W.lo.g., let c be the greatest
among the three numbers. Then a% + b 4 c® > a* + b* + ¢* > b* +c* >
2b?c? = 2b-c-bc > 3-a - be. Thus there are no solutions in this case.

It remains to study triples that contain 1. W.L.o.g.,leta = 1. The equation
reduces to 1 + b° + ¢? = 3bc. Assume b > 3, ¢ > 3. Wlo.g., ¢ > b, leading
tol+b°+c? >14+13+ > 3 > 3-b-c. Thus there are no solutions
in this case either. Now assume b > 2, ¢ > 2 and one of the numbers is
2. Wlo.g. letb = 2. The equation reduces to 1+ 2° + ¢> = 6¢ which
can be interpreted as a quadratic equation w.r.t. ¢ that leads to c = 3 £
V9 — (2¢+1). Hence 8 — 2¢ is a perfect square. The only candidates for
this are 4 and 0 that give ¢ = 2 and ¢ = 3, respectively, but ¢ = 2 leads
to contradiction (the above formula would give ¢ = 1 or ¢ = 5). The case
¢ = 3 gives the solution (1,2,3) of the original equation. By symmetry,
also (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1) are solutions. If one of the
numbers b and ¢ is 1 then, w.l.o.g., b = 1. The equation reduces to 1 + 1 +
¢ = 3¢, whence ¢ = 1. This gives the trivial solution (1,1,1).

O14. (Seniors.) Let ABC be an acute triangle and D an interior point of its
side AC. We call a side of the triangle ABD friendly, if the excircle of ABD
tangent to that side has its center on the circumcircle of ABC. Prove that
there are exactly two friendly sides of ABD if and only if |[BD| = |DC].

Solution. Let E, F and G be the centers of excircles touching BD, AD and
AB respectively, and let w be the circumcircle of ABC (see Fig. 5). To prove
the assertion of the problem, we will show that F and G cannot both lie on
wand thatE € w <= |BD| = |DC| <= F € w.
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As AF and AG are bisectors of the two
complementary angles of BAD, the point
A lies on the segment FG. Thus, only one
of the rays AF and AG can cut the circle w
again, and therefore only one of F and G
can lie on w.

To show that E € w iff |[BD| = |DC|,
we first note that E lies on w iff ZCAE =
ZCBE. Since ZCAE = $/BAD = }(n — _
Z/ADB— /ABD) = }(7— (m—2/BDE) — Fig. 5
(m —2/DBE)) = ZBDE + Z/DBE — 5§ = 5 — ZBED, we see that E € w
is equivalent to ZCBE = % — ZBED, i.e BC and DE being perpendicular.
Since DE is the bisector of BDC, this occurs iff |[BD| = |DC].

It remains to show that |BD| = |DC]| iff F € w. Point F lies on w iff
ZAFB = /BCD. Using the fact that ZBAF = /BAD + 1(n — ZBAD) =
1(m+ £ZBAD), we get ZAFB = 1 — ZABF — /BAF = T=£ABD-ZBAD _
4A2DB = ABCD;”lCBD. Thus ZAFB = /BCD is equivalent to Z/BCD =
ZCBD,ie., |BD| = |DC|.

Remark. The claim holds in the case of right or obtuse triangle, too. The
problem with the above proof is that if ZABC > 90° then point E may fall
inside triangle ABC, whence equality ZCAE = ZCBE is no more equiva-
lent to E € w. Nevertheless, one can show that if [BD| = |DC|, then E must
lie outside triangle ABC, extending the validity of the claim to the obtuse
case.

O15. (Seniors.) Let k be a positive integer. Determine the
largest number of snakes, consisting of four squares (see fig-
ure), which can be placed on a (2k + 1) x (2k + 1) chessboard
so that the snakes neither overlap nor stick out across the
edges of the chessboard. The snakes can be turned and reflected.

Answer: k2.

Solution. First show that k? snakes can be placed on a (2k +1) x (2k +1)
chessboard. Divide the chessboard into strips of width 2 (one strip of width
1 remains). On any strip we can place k snakes, one after another; so on k
strips, it is possible to place k* snakes.

It remains to prove that one can not place more than k? snakes on the
chessboard. Write numbers 0,1, 0, 1, ..., 0 in the odd rows, and numbers 2,
3,2,3,...,2in the even rows. Notice that no matter how we place the snake
on the board, it always covers numbers 0, 1, 2 and 3. Since all numbers 3
are in the squares with even row and column numbers, there is exactly k?
of them, hence there can be at most k% snakes.
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Selected Problems from the Final Round
of National Olympiad

F1. (Grade 9.) Integers a, b, ¢ are such that a + b + ¢ is divisible by 6, and
a® + b? + % is divisible by 36. Does it imply that a® + b® + ¢ is divisible by
a) 8; b) 27?

Answer: a) yes; b) no.

Solution. a) As the sum of a, b, and c is divisible 6, and is therefore even,
there must be either 0 or 2 odd numbers among the three. If we had 2 odd
numbers, the sum of the squares a? + b? + ¢*> would give a remainder of
0+1+1 = 2 when dividing by 4. But this is not possible, since the sum is
divisible by 36, and therefore also by 4. So, all the numbers a, b, ¢ are even.
Hence, all the numbers a3, b3, ¢3 are divisible by 8, and so is their sum.

b)Ifa = 8,b = ¢ = 2, then all of the premises are fulfilled: 8§ 242 = 12
is divisible by 6 and 8% + 22 + 22 = 72 is divisible by 36. But 8% + 23 + 23 =
528 is not divisible by 9, and therefore, it is not divisible by 27.

F2. (Grade 9.) Let ABC be an isosceles triangle with |[AB| = |AC|. The
bisector of angle ABC meets the side AC at the point D.
a) Is the triangle ABD isosceles whenever the triangle BCD is isosceles?
b) Is the triangle BCD isosceles whenever the triangle ABD is isosceles?

Answer: a) yes; b) no.

Solution. a) Denote /BAC = « and ZABC =
ZACB = B (Fig. 6). Assume that the triangle BCD
is isosceles. If |CB| = |CD|, then the angles ZCBD,
ZCDB and ZBCD would be g, g and f respectively,
which implies 2 - £ 4+ g = 180° giving = 90°. This
is impossible, since the triangle ABC has two angles
equal to B. If |DB| = |DC|, then we would get g =
B, which is also impossible. This leaves the only
option |BC| = |BD)|. Then, the triangles ABC and BCD are similar, since all
corresponding angles are the same. Therefore /DBA = /DBC = ZBAC =

ZBAD, showing that the triangle ABD is isosceles with
C IDA| = |DB|.

b) If the angles of the triangle ABC are % -180°, % :
180°, 2 - 180° (Fig. 7), then ZADB = 180° — ZBAD —
ZABD =180° — 2-180° — 1 -180° = 2 -180° = ZBAD,
which shows that the triangle ABD is isosceles with
|BA| = |BD|. At the same time, the angles in the trian-
gle BCD are } - 180°, 3 - 180°, 7 - 180°, which are pair-
Fig.7 wise different, so the triangle BCD is not isosceles.

Fig. 6
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F3. (Grade 9.) An equilateral triangle with side length 3 is

divided into 9 equilateral triangles with side length 1. An in-

teger from 1 to 10 is written into every point that is a vertex

of a small triangle (colored vertices on the figure), such that

all numbers are written exactly once. For every small trian-

gle, the sum of the numbers in its three vertices is written inside it. Prove
that at least three of those sums are greater than 11.

Solution. In a triangle, which has 10 at one vertex, the sum is at least
13. If 10 is not at one of the vertices of the large triangle, the number of
triangles with sum greater than 12 is at least 3 and the problem is solved. If
10 is at the vertex of the large triangle, then look, where is the number 9. If
9 does not lie at a vertex of the large triangle, then there are at least 3 small
triangles, with a sum of at least 12, and the problem is solved. If 9 is at a
vertex a the large triangle, then look, where is the number 8. If 8 does not
lie at the vertex of a large triangle, then it is at a vertex of at least 3 small
triangles. In at least two of them the sum is at least 12, and as at most one
of these can overlap with one of the triangles found earlier, the problem is
solved. If 8 is at a vertex of the large triangle, then either the sum in that
triangle is at least 12, meaning the problem is solved, or the other vertices
in the triangle have numbers 1 and 2. In the last case, the numbers 3, 4
and 5 are the smallest numbers whose positions are not set, but these give
a sum of 12. So, we can simply choose any triangle who vertices we have
not looked at yet as our third triangle (there are three of these triangles).

F4. (Grade 9.) Jiiri wishes to draw n circles and any number of lines on
the plane such that all the lines meet at one point, and for every two circles
there exist two lines that touch both of these circles.

a) Is it possible for Jiiri to solve this problem for any n > 2?

b) For which natural numbers # is it possible to solve this problem if in
addition all the circles must have the same radius?

Answer: a) yes; b) n < 4.

Solution. a) Jiiri can draw two lines and draw any number of circles such
that they touch both of the lines (Fig. 8).

b) Assume that Jiiri has solved the problem for some n, where n > 1.

O

U

Fig. 8 Fig. 9
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Let O be the intersection point of all the lines. Look at any circle c¢. From
the premises of the problem we see that the circle c touches two of the lines
drawn by Jiiri, which we call k and [. But any one circle can only touch up
to two lines drawn from one point. So, the circle ¢ does not have any more
lines touching it. If ¢’ is any other circle drawn by Jiiri, then the common
tangents of ¢ and ¢’ can only be k and I. Therefore, k and I are the common
tangents of all the circles. Two lines divide the plane into four sectors, inside
each can be only one circle with the previously set radius (Fig. 9). So, for
n > 4 the problem has no solution but for n < 4, it obviously has.

F5. (Grade 10.) Find all pairs (1, m) of positive integers such that the arith-
metic and geometric means of m and 7 are different two-digit numbers con-
sisting of the same digits.

Answer: (32,98), (98,32).

Solution. Let 10a + b be the arithmetic mean of the given numbers, where
a and b are decimal digits. Let 102 + b + x and 10a + b — x be the numbers
we are searching for. Then, by the premises

/(102 4B+ x)(10a +b — x) = 100 +a,

which after squaring and simplifying gives x> = 99(a®> — b?). So, x? is
divisible by 99, implying x? is divisible by 3 and 11. Since 3 and 11 are
primes, x itself is divisible by 3 and 11, and therefore by 33. Denoting x =
33z, we get

_99-11z22  x%
9 99
from which we see, that the product (a +b)(a — b) is divisible by 11. Since
11 is a prime, either a + b or a — b is divisible by 11. Since a —b # 0 and
a and b are single-digit numbers, we must have a + b = 11. Therefore
a—b = z2. Sincea — band a + b are either both odd or both even, z must be
odd. So, z = 1, since z > 3 implies x > 99, but 10a + b — x must be positive.
So,a = 6,b =5, x = 33, and the corresponding pair is (98, 32).

1122 >~V =(a+b)(a—Db),

F6. (Grade 10.) We say that two real numbers r and s are close if [r —s| =
10" for some integer u. Let y = ax + b be a linear function, for which there
exist close numbers x; and x; so that the corresponding y; and y; are also
close. Prove that for any close numbers x and x}, the corresponding vy} and
y4 are also close.

Solution. From the premises we get |x; — x| = 10" and |y — 12| =
|(axq +b) — (axp +b)| = 107 for some integers 1, v. So,

107 = [(ax1 +b) — (axa + )| = |a(x1 — x2)| = |a] - |x1 = x2| = |a] - 107,

. . v —
which gives [a| = 18 = 10°~". Let x/, x} be any close real numbers, |x] —

| = 107 Then [yy —y5| = [(axy +b) — (ax; + b)| = [a(x) — x3)| =
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la| - |y — xb| =10°7% - 10% = 102", Since u, v, w are integers, w + v — u
is also an integer, which shows that i/}, v/} are close.

F7. (Grade 10.) Let ABC be a triangle on the plane. The angle bisector from
the vertex A meets the side BC at P, and the median from the vertex B meets

the side AC at M. The lines AB and MP meet at the point K. Prove that if

% = 2, then AP and CK are perpendicular.

Solution 1. Let K’ be a point on the ray AB, such
that B is the midpoint of the line segment AK’ (Fig. C
10). Then CB is the median of the triangle ACK'.
As P divides this line segment in the ratio 2 : 1, P
must be the centroid of the triangle ACK’. So, K'M,
which is also a median of the triangle ACK’, must
pass through the point P. Therefore, K = K’. So, B is P
the midpoint of the line segment AK. As AP passes
through the point P, AP is also a median of the trian- 4 B
gle ACK. By the premises it is also an angle bisector.
So, the triangle ACK is isosceles with |AC| = |AK] Fig. 10
and AP is its height. Therefore, AP L CK.

Solution 2. As in solution 1, we show that B is the midpoint of AK. So
BM joins the midpoints of sides in the triangle ACK and therefore BM ||
CK. An the angle bisector divides the opposite side in the same ratio as

% = % = 2. As M is the midpoint of AC,

we have |AB| = |AM]|. An angle bisector, drawn from the vertex opposite
the base in an isosceles triangle, is also the height in that triangle, giving
AP 1 BM. It follows that AP L CK.

the corresponding sides, so

F8. (Grade 10.) An equilateral triangle with side length 3 is

divided into 9 equilateral triangles with side length 1. An in-

teger from 1 to 10 is written into every point that is a vertex

of a small triangle (colored vertices on the figure), such that

all numbers are written exactly once. For every small trian-

gle, the sum of the numbers in the three vertices is written inside it. Prove
that there exist three small triangles such that the sum of the numbers inside
them is at least 48.

Solution 1. Any three small triangles, from which no two have common
vertices, take up nine of the ten numbers written into the vertices of the
small triangles. So, the sum of the numbers inside those small triangles
is 55 — a, where a is the number at the last vertex. Now it is sufficient to
prove that we can choose the three small triangles, from which no two have
common vertices, in four different ways, always leaving a different vertex
out. So, in at least one case, the number at the last vertex is at most 7, and
the sum of the numbers in the three chosen triangles is at least 55 — 7 = 48.
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Fig. 11 Fig. 12 Fig. 13 Fig. 14

Indeed, the three triangles can be chosen so that they leave uncovered the
central number (Fig. 11) or one of the corner numbers (Fig. 12, 13, 14).

Solution 2. Let m be the number in the center of the large triangle. Then,
when adding the sums of the three corner triangles we get the sum of all
the numbers from 1 to 10, except m, so the sum of the corner triangles is
55 — m. If m < 7, then the sum is at least 48.

In the rest of the cases, consider any three triangles around the center
point, such that no two of them share a side. Adding the numbers in them,
we get the sum of all the numbers from 1 to 10, except the three numbers
in the corners, while we add the center number three times. So the sum of
those triangles is at least 21 + 3m. If m > 9, then the sum is at least 48.

This leaves the case m = 8. The sum of the numbers in the triangles in
the corners is at least 55 — 8 = 47, so at least one of them contains a sum
that is at least 16. If none of the triangles contains a sum 17 or greater, the
number 16 must occur in two different triangles. The sum of the numbers
in any three triangles around the center point, chosen like above, is at least
21+ 3-8 = 45. So, in both triples at least one of the triangles contains a
sum of at least 15, and since triangles sharing an edge cannot contain the
same sum as the corresponding sums differ by exactly one term, at least
one of the six triangles around the center point contains a sum of at least 16.
Thus we can pick the three desired triangles from among either one corner
triangle and two central triangles or two corner triangle and one central
triangle that contain the largest numbers.

F9. (Grade 10.) Find all triples of positive integers (x,y,z), for which
x-y'+2y-x! =zl
Answer: (2,1,3) and (n,n + 1,1 + 2) for every positive integer n.
Solution. Since the left-hand side is greater than both x! and y!, obviously
z > x and z > y. So, both sides of the equation are divisible by both x! and
y!. Therefore, x - y! is divisible by x!, which means that y! is divisible by
(x —1)!, giving y > x — 1. Analogously, 2y - x! is divisible by y!, meaning
2-x!is divisible by (y — 1)!. The case x = 1, y = 3 is not a solution, the case
x > 1gives2-x! < (x+1)!, which implies x > y — 1. This leaves us to look
through the cases —1 <y —x <1.
e If y = x — 1, then the equation simplifies to (2x — 1) - x! = z!. As
(x+1)(x+2)>2x—1,wehave2x —1 =x+1and z = x + 1. This
gives the solution x =2,y =1,z = 3.
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e Ify = x, the equation simplifies to 3x - x! = z!. As (x+1)(x +2) > 3x,
we have 3x = x + 1, but this does not give integer solutions.

e If y = x + 1, the equation simplifies to (x? + 3x +2) - x! = z! or (x +
2)! = z!. From here we get a family of solutions x = n, y = n+1,
z=mn+2.

F10. (Grade 11.) In his last research, professor P was concentrating on nat-
ural numbers with a certain property. It is known that whenever a natural
number x has this property, all multiples of x also have this property. Let
ai, ..., ap be positive integers such that all their divisors that are greater
than one have the property professor P studied. Is it true that all divisors
greater than one of the product a; ... a, definitely have this property?

Answer: yes.

Solution 1. Let k > 1 be any divisor of the product a; ...a,. Then k has
a prime divisor p, which is also a divisor of the producta; ...a,. Aspisa
prime, there exists 7, such that p is a divisor of a;. As all the divisors of a;
greater than 1 have the property, p also has this property. By the premise,
all the multiples of p have the property, so k has the property.

Solution 2. Let k > 1 be any divisor of the product a; ...a,. If k were
relatively prime to all a;, it would be relatively prime to the producta; ... ay,,
but ged(k,a; ...a,) =k > 1. Hence ged(k, a;) > 1 for some a;. As a divisor
of a;, the number ged(k, ;) has the property studied by professor P. As a
multiple of ged(k, a;), also k has the same property.

F11. (Grade 11.) a) Find all positive integers n, such that the sum of all
integers from 1 to n + 1 can be represented as the sum of n consecutive
integers.

b) Find all positive integers 1, for which there exists an integer a, such
that the sum of the integers from a to a + n is equal to the sum of the integers
froma+n+1toa+2n.

Answer: a) 1; b) all positive integers.

Solution 1. a) Clearly the sum of the first two positive integers can be
represented as the sum of one positive integer. Now, let n > 2 and let us
show that the sum of the n +4- 1 first positive integers cannot be represented
as a sum of n consecutive integers. Indeed, on one hand 1 +2+ ... +n +
(n+1)>2+3+...4+n+(n+1),ontheotherhand1+2+...+n+ (n+
1) < 142434+ +n+n+1)+1=3+...+n+m+1)+2+2<
3+...+n+ (n+1)+ (n+2). So the sum of n + 1 first positive integers
1+...4 (n+1)liesbetween2+...+ (n+1)and 3+...+4 (n +2), which
both are consecutive sums of n consecutive integers. So, the number 1 +
...+ (n+1)is not a sum of n consecutive integers.

b) Let n be any positive integer. To solve the problem, it suffices to see
thatn? + (2 +1)+...+ (2 +n)=n> - (n+1)+(1+...+n) =n-(n*>+
n+1+...+n)=m+n+1)+...+ (n®+n+n).
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Solution 2. We use the formula for the sum of arithmetic progression.

a) If n is odd, then the sum of n consecutive integers is divisible by n.
So, if the number 1 +2+ ...+ (n+1) = 5. (n+2) was the sum of n
consecutive integers, it would be divisible by 1+l and by n. As n+ 1 and

n are relatively prime, the same clearly holds for ”—+1 and n. Therefore,

121 (n +2) should be divisible by 3! - , meaning that 1 + 2 should be
divisible by 7.

If n is even, the sum of n consecutive integers is divisible by 5. So, if
1+2+...+ (n+1) = (n+1) - 52 was the sum of n consecutive integers,
it would be divisible by both n + 1 and 5. As n 41 and #n are relatively
prime, also 7 4 1 and 7 are relatively prime. Thus, (n + 1) - 42 should be
divisible by (1 + 1) - %, implying that 1 + 2 is divisible by #.

So, in all cases n 4 2 is divisible by n, which is equivalent to saying 2 is
divisible by n. So, n = 1 or n = 2. Clearly 1 + 2 is the sum of one integer,
but 1+ 2+ 3 = 6, being an even number, cannot be represented as the sum
of two consecutive integers.

b) If a is the first of the two consecutive integers, then the problem can be
represented as the equation (a +a+n)(n+1)/2= (a+n+1+a+2n)n/2.
By simplifying we see that it is equivalent to a = n?. This means that the
sum of 1 4 1 consecutive integers, first of which is n2, is the sum of the next
n consecutive integers. So, the desired numbers exist for every n.

F12. (Grade 11.) The sides AB and AC of the triangle ABC touch the circle
¢ respectively at points B’ and C’. The center L of the circle c lies on the
side BC. The circumcenter O of triangle ABC lies on the shorter arc B'C’ of
the circle c. Prove that the circumcircle of ABC and the circle c meet at two
points.

Solution. Let r be the circumradius of ABC,
let s be the radius of c and « = ZBAC (Fig. 15).
By tangency, |AB'| = |AC'|. Thus ZC'B'A =
/B'C'A = % — § whence, by property of in-
scribed angle, /ZB'OC' = — (5 —5) =5 +5.
Clearly ZB'OC’ > ZBOC = 2u, leading to 5 +
5 > 2a. Hence & < %. Now let K be the mid-
point of side BC. From the right triangle KOC,
one gets |[KO| = |OC|cos ZKOC = rcosa. By
the inequality obtained above, cosa > cos 5 = Fig. 15
1. On the other hand, |[KO| < |LO| = s, leading
to 47 < rcosa = [KO| < sorr < 2s. As ¢ passes through the circumcenter
of ABC, this inequality shows that these circles must intersect.

Remark. This problem, proposed by Estonia, appeared in the IMO 2011
shortlist as G1.
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F13. (Grade11.) A finite grid is covered with 1 x 2 cards in such a way that
the edges of the cards match with the lines of the grid, no card lies over the
edge of the grid, and every square is covered by exactly two cards. Prove
that one can remove some of the cards in such a way that every square will
be covered by exactly one card.

Solution. Choose any square covered by two cards, and choose one of
these cards. Move that card to a neighbouring square, and choose the other
card that is covering that square. From there we move to the next square,
etc., until we return to the first square. We cannot return to any other square
visited previously, since in all squares except the first one, both cards have
been chosen already. If we color the rectangular grid like a chessboard, then
after an odd number of moves, we reach a square with the opposite color,
and after an even number of moves, we reach a square with the same color.
Therefore, the number of chosen cards is even. So, we can remove every
second chosen card. All of the remaining squares we passed through will
be covered by exactly one card. If after this, there are still squares that are
covered by two cards, we repeat the process with a new randomly chosen
square which is covered by two cards. We can never move from a square
covered by two cards to a square covered by exactly one card, since all the
squares covered by exactly one card were previously connected to squares
now covered by exactly one card. So, after a finite number of steps we can
find a new cycle, from which we can remove every second card. We repeat,
until all squares are covered by exactly one card.

F14. (Grade 11.) There are 2012 points marked in a square with side length
11. Prove that one can choose an equilateral triangle with side length 12
which covers at least 671 points.

Solution. Place two equilateral triangles with side
lengths 12 on the square in such a way that both have
one vertex lie on the side of the square and the oppo-
site sides of these vertices partially coincide with the
other side of the square and with each other (Fig. 16).
The area common to both triangles forms an equi- Fig. 16
lateral triangle of side length 1. Position the third
equilateral triangle with side length 12 between the two triangles, turned
180°, such that the lowermost vertex of that triangle coincides with the up-
permost vertex of the small triangle. To show that the square is fully cov-
ered by these triangles, we must show that the sum of the heights of the
large and the small triangle is at least 11, which is equaivalent to showing

‘/T§ -(1241) > 11. As we can simplify this equation to 13/3 > 22 and
3-169 > 484, we see that it holds. Therefore at least a third of the 2012
points or at least 671 points lie in one of the three chosen triangles.
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F15. (Grade 12.) Find all pairs (x, y) of positive integers such that
1 249 1 1
2 + W + ]7 = 012"
Answer: (503,1006), (1006, 503).

Solution 1. Let ged (x,y) = d and x = ad, y = bd. Then the equation can

a24249ab+b> 1 or
242 T 2012

a*b?d* = 2012(a* + 249ab + b?).
As a and b are relatively prime, a? and b? are both relatively prime to a? +
249ab + b? and therefore both they must be divisors of 2012. As 2012 = 22 -
503 and 503 is a prime, the possible cases are (a,b) = (1,1), (a,b) = (1,2),
(a,b) = (2,1). If we substitute (a,b) = (1,1) into the last equation, we
get d2 = 2012 - 251, which is not solvable in integers. The other two cases
give 4d> = 2012 - 503, from which d = 503. This leads to the solutions
(x,y) = (503,1006) and (x,y) = (1006, 503).
Solution 2. Multiplying both of the sides by 2012x?y?, we get

2012x% + 249 - 2012xy + 2012y* = x*y>.

From the left-hand side we see that both sides of the equation must be di-
visible by 503. As 503 is a prime, one of the numbers x and y must be
divisible by 503. So x? or y? is divisible by 5032, giving that both sides
of the equation are divisible by 5032. If x is divisible by 503, the sum-
mands 2012x2 and 249 - 2012xy on the left-hand side are divisible by 5032,
meaning that 2012y? is divisible by 503%. Therefore y is divisible by 503.
Analogously, we get that if y is divisible by 503, then x is also divisible by
503. Consequently, both x and y are divisible by 503. Denote x = 5034,
y = 503b. Then the equation, after dividing both sides by 503%, simplyfies
to 4a% 4 996ab + 4b* = 503a2b2. Assume a > b. If b > 2, then 5034202 >
5034 - 2b = 1006a°b = 4a’b + 4a”b + 998a%b > 4a* + 4b* + 996ab, so the
last equation cannot hold. Therefore b = 1. Now we get a quadratic equa-
tion 499a% — 996a — 4 = 0 with respect to a, whose only positive solution is
a = 2. From here we obtain the solution (1006,503) to our original equa-
tion. The case b > a is symmetrical and gives the solution (503,1006).

be written as

F16. (Grade 12.) a) Prove that for every real number x the arithmetic mean
of v/1+sinx and /1 — sin x is equal to one of the following: sin 5, COS 7,
—sin 3, —cos 3.

b) Can one leave out one of the four numbers listed in part a) in such a
way that the claim still holds?

Answer: b) no.

Solution 1. a) Denote the arithmetic mean given in the problem by A(x).
As

1+sinx = sinZE —|—coszf —i—ZSinfcosE = (sinE +cosf)2,
2 2 2 2 2 2
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X b b X X x\2
1—Sinx=Sin2§+C052§—ZSiHECOSE = (sinz—cosz) ,
we get
Alx) = V1+sinx ++4/1—sinx _ |sin 5 +cos 5| + |sin 5 — cos 5|
2 2 ’

Depending on the signs of the numbers sin 5 + cos 5 and sin 5 — cos 7, one
of the trigonometric functions in the numerator cancels out and the other
one is doubled, with either a positive or a negative sign. Therefore, A(x) is
equal to one of the numbers sin 7, cos 5, —sin 5, — cos 5.

b) Clearly A(x) = 1, whenever x is one of the numbers 0, 7, 271, 37.
Nevertheless, each of these four values makes a unique expression among
sin 5, cos 5, — sin 5, — cos 5 evaluate to 1. Therefore, none of these four can
be left out.

Solution 2. Part a) can also be proven as follows. Let A(x) be the same
as in the first solution. Then

2
<\/1+sinx+\/1sinx> _ 2+42V1-sin’x 1+ |cosx|
= 1 =

2 2 ’

so that A(x) = 4/ M Therefore, if cos x > 0, then A(x) = |/ 1H5% =

+cos 3; if cosx < 0, then A(x) = \/H% = £sin 3.

F17. (Grade 12.) In an acute triangle ABC, a point P is chosen such that all
points symmetrical to P with respect to the sides of ABC lie on the circum-
circle of ABC. Prove that P is the orthocenter of ABC.

Solution. Let A’, B/, C' be points symmetric to
the point P with respect to the sides BC, CA, AB
(Fig. 17). Then |C'A| = |PA| = |B’A|, giving that
the arcs AC’' and AB’ of the circumcircle of the tri-
angle ABC are equal. Since A and C’ are on the
same half-plane from the line BB/, and C on the
other one, we have /C'CA = /B'CA = /PCA.
Since P and C’ are on the same side from the line
AC, the points P, C, C’ are collinear. Since PC’ L
AB, we must also have PC L AB, that is, the point
P lies on the height drawn from the vertex C in the
triangle ABC. Analogously we see that P is on the
other two heights.

Remark 1. The converse—the points symmetric to the orthocenter with
respect to the sides of the triangle lie on the circumcircle of the triangle—is
a known result in elementary geometry that can also be used to solve this
problem. Namely, the point P lies on the reflections of arcs AB, BC, CA from
the corresponding lines AB, BC, CA of the circumcircle. By the theorem

Fig. 17
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mentioned, the intersection point of the height lies on the same arcs. But
the circles, whose arcs are the reflections, already meet twice pairwise at
the points A, B, C. Therefore, they cannot have two common intersection
points.

Remark 2. The claim of the problem, as well as the theorem given in
Remark 1, hold for all triangles, not just acute ones.

F18. (Grade 12.) There are 2" soldiers standing in a line, where # is a posi-
tive integer. The soldiers can rearrange themselves into a new line only in
the following way: the soldiers standing at odd numbered positions move
to the front of the row, keeping their positions with respect to each other,
and the soldiers previously standing at even numbered positions move to
the end of the row, keeping their positions with respect to each other. Prove
that after n rearrangements the soldiers stand in the same ordering as in the
beginning.

Solution 1. The last soldier does not change its position. The rest of the
soldiers regroup just as in the case, when the last soldier was not there, and
the number of the soldiers was 2" — 1. So, it suffices to prove the claim
for 2" — 1 soldiers. We show that after n rearrangements the soldiers are
in positions, which can be found in the original line by counting cyclically
every 2'-th soldier (after the last soldier we go to the first one). Indeed,
after 0 rearrangements, the claim clearly holds, and every rearrangement
makes us cyclically count every second soldier in the previous line (after the
last soldier we go to the second one), the first soldier will still be counted
first. After n rearrangements the soldiers in the new line can be found by
counting every 2"-th soldier in the old line with 2" — 1 soldiers. Since the
remainder of 2" when divided by 2" — 1 is 1, this is equivalent to simply
counting the soldiers. This means that we get back the original line.

Solution 2. Enumerate the soldiers starting from 0, and write the num-
bers in binary form (adding leading zeros to make the lengths of the binary
codes equal; for example for n = 3 we have the numbers 000, 001, 010, 011,
100, 101, 110, 111). After a rearrangement the soldiers stand in such a way
that when reinterpreting the last digit as the first one (but leaving the order
of the rest of the digits the same), the soldiers are again enumerated by con-
secutive numbers. After n rearrangements the binary code of the soldiers
has returned to the original, so every soldier’s position corresponds to their
original position in the line.

F19. (Grade 12.) a) Does there exist a function from real numbers to real
numbers, which is not constantly zero and whose derivative’s graph can be
obtained by reflecting the graph of the original function with respect to the
y-axis?

b) Does there exist a function from real numbers to real numbers, which
is not constantly zero and whose derivative’s graph can be obtained by
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shifting the graph of the original function towards the positive side of the
x-axis by one unit?

Answer: a) yes; b) yes.

Solution. a) What the problem asks is equivalent to finding a function f
such that f'(x) = f(—x) for all real numbers x. This is so, for example, for
the function f(x) = sinx + cos x, since f/(x) = cosx —sinx = cos(—x) +
sin(—x) = f(—x).

b) The premise about the graphs is equivalent to saying that for every
real number x, we have f'(x) = f(x —1). Assume that we have a > 1
such that Ina = a~!. Then, defining f(x) = a*, we get f'(x) = a*lna =
a*-a~! = a*! = f(x —1). It remains to make sure that such a number
a > 1lexists. Sincelnl=0<1=1'andlne=1> e~ ! the graphs of the
continuous functions g(x) = Inx and h(x) = x~! intersect at some point
a > 1. This is the number we were looking for.

Remark. One can prove that in part a) precisely all functions of the
form f(x) = c¢- (sinx + cosx), where ¢ # 0, satisfy the premises. The an-

swers can be written in a different form, for example % - (sinx + cosx) =
sin (x+ F).

IMO Team Selection Contest

First day

S1. Prove that for any positive integer k there exist k pairwise distinct
integers for which the sum of their squares equals the sum of their cubes.

Solution. For any integer m > 1 the numbers 2m? + 1, m(2m? + 1),
—m(2m? + 1) satisfy the conditions of the problem, because they are pair-
wise different and

2m?* +1)% + (m(2m* + 1)) + (—m(2m* +1))?
=1 +m?+m?) - 2m?+1)2 = 2m?+1)} = 1+ m® —m®) - (2m* +1)°
= (2m? +1)° + (m(2m* +1))® + (—m(2m* + 1))%.
With m growing, the numbers in these triples get arbitrarily large, hence
for any set of these triples one can find a new triple, where all numbers are
larger than the ones already used.

Any positive integer k can be written as k = 3 +r with 0 < r < 3.
Choose g triples as above so that the numbers in them do not coincide. If
r = 1, then add 0, and if » = 2, then add 0 and 1. Since for each group
the sum of the squares of the numbers equals the sum of the cubes of the
numbers, the same property holds for the whole set.

Remark 1. One can find these triples by looking for three numbers where
two of them are opposites of each other. This gives the equation x? + 2y? =

22



x3, or 2y> = x?(x —1). Letd = gcd(x,y) and x = dn, y = dm. Then
2m? = n?(dn —1). If n had a nontrivial prime divisor, then it must also
divide m, a contradiction. Hence n = 1 and the equation is 2m? = d — 1, or
d = 2m? + 1. By choosing m freely we get the triples above.

Remark 2. One can also solve the problem by first showing that there
exist infinitely many quadruples (—m, m, —n,n + 1) with 2m? = n? + n that
satisfy the conditions of the problem.

52.  For a given positive integer 1 one has to choose positive integers ag,
ai, ... so that the following conditions hold:

(1) a; = aj4, forany i;

(2) a; is not divisible by # for any i;

(3) aiq, is divisible by a; for any i.
For which positive integers n > 1 is this possible only if the numbers ay, a1,
... are all equal?

Answer: for all primes.

Solution. Let n be a prime. By condition (1) the sequence 4y, a1, ... con-
tains only finitely many different numbers. If 4;, is maximal of them, then
by condition (3) 444, must also be maximal. Let us prove that if a,, is
maximal of the numbers, then a,, k., is also maximal for any k > 0. This
holds for k = 0. If the claim holds for k, then a,, , (t11).0,, = Tmskaptan =
Amtk-ap+ay g, = Am+ka, = Am- This proves the claim. By condition (2) a;
is not divisible by n. Since # is prime, the numbers a,, and n are relatively
prime. Hence among the numbers m + k - 4, where 0 < k < n, there is one
in each congruence class modulo 7. Hence all members of the sequence are
maximal, i.e. they are equal.

Suppose 1 is a composite number; let m be its divisor with 1 < m < n.
For any k < m choose a;, = m + k - n and continue the sequence with period
m. Condition (1) holds, since n is a multiple of m. Condition (2) holds,
since all members of the sequence are congruent to m modulo n. For the
condition (3) notice that all members of the sequence are divisible by m.
Hence i and i + a; are always congruent modulo m, therefore a; = a; 5. At
the same time not all the numbers are equal.

S3. Ina cyclic quadrilateral ABCD we have |AD| > |BC| and the vertices
C and D lie on the shorter arc AB of the circumcircle. Rays AD and BC
intersect at point K, diagonals AC and BD intersect at point P. Line KP
intersects the side AB at point L. Prove that ZALK is acute.

Solution 1. From the properties of cyclic quadrilaterals we get ZKAB =
ZKCD and ZKBA = ZKDC. Let A’, B/, K’ be the foots of the altitudes of
the triangle ABK drawn from the vertices A, B, K, respectively, and let H
be the orthocenter of the triangle ABK (Fig. 18). The points A, B, A/, B lie
on a common circle, hence /ZKA'B' = Z/KAB if A’ # B'. Therefore A’ and
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Fig. 18 Fig. 19

B’ lie on a line parallel to CD. Denote this line by A’B’ (even in the case

A’ =B =K).
Let d(X, 1) be the distance of point X from line /, and let S be the area of
triangle A. By two angles, AACK ~ ABDK and APAD ~ APBC, whence

|AK] _ |AC] |Ap| _ |AD| :
BK] = [BD| and BP] = |BC|'At the same time

d(A,CD) Saacp _ |AC|-|AD|-sin/CAD _ |AC| |AD|
d(B,CD)  Sagco  |BD|-|BC|-sinZCBD _ |BD| [BC|’
d(A,KP) _ Spakp _ |AK|-|AP|-sin ZKAP _ |AK| |AP)

d(B,KP) ~ Sapkp  |BK|-|BD|-sin ZKBP ~ |BK| [BP|’

Therefore
|AL| B d(A,KP) B d(A,CD)

ILB| ~ d(B,KP)  d(B,CD)’
Considering instead of the cyclic quadrilateral ABCD the quadrilateral de-
termined by points A, B, A/, B/, and instead of P and L the points H and
K’correspondingly, we get similarly that
|AK'|  d(A,KH) d(A,A'B’)

IK'B| ~ d(B,KH)  d(B,A'B)’
This equality holds also in the special case A’ = B’ = K. Indeed, let the
projections of points A and B to the line A’B’ be X and Y correspondingly
(Fig. 19), then ZAKX = ZKDC = ZKBA = ZAKK', ZBKY = ZKCD =

/KAB = /BKK’, whence AAKX = AAKK' and ABKY = ABKK'. It
AK' d(A,A'B
follows that |AK’| = |AX]|, |BK'| = |BY|and ﬁ = W.
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Since C and D lie on the shorter arc AB, we
have /BCA = /BDA > %. Thus the line A’B’
is farther from the points A and B than the line
CD. Since |AD| > |BC|, we have ZABD >
ZCAB and also ZKBA > ZKAB, which implies
|KA| > |KB|. Hence d(A,CD)+ d(K,CD) >
d(B,CD)+d(K,CD), or d(A,CD) > d(B,CD).
All together

|AL|  d(A,CD) _ d(A,A'B")  |AK'|

ILB| ~ 4(B,CD) ~ d(B,A'B)) _ |K'B|’
Hence L lies farther from A than K’ on the seg-
ment AB, therefore ZALK < ZAK'K = %, ie. )
ZALK is acute. Fig. 20

Solution 2. Denote Z/ZKAB = ZKCD = «, ZKBA = ZKDC = B, ZKAC =
ZKBD = ¢ and ZALK = ¢ (Fig. 20). Then ZKDB = a + p — 6 = ZKCA.
The condition |[AD| > |BC| is equivalent to f > «, and points C and D
being located in the shorter arc AB is equivalent to the inequality & +  —

0 < Z. In triangle KCD we get % = :ﬂz From triangles KDP and
KCP we obtain — XL — [KD| IKPL__ K] , Tespec-

sin(a+p—0) sin(¢—(B—0))” sin(a+p—9) sin(+(a—0))

tively. Consequently, % = % Expressions of % together yield

ina __ sin({—(B—9)) __ singcos(f—5)—cos¢ sin(f—0) . . .
:ﬂz ~ sin(8+(a—6)) — sin¢cos(a—4)—+cos sin(a—d)” that in turn implies

sin ¢ (sin B cos(B — J) —sinw cos(a — J))

= cos ¢ (sin Bsin(f — ) +sinasin(a —6)). (1)

Clearly sin¢ > 0 and sin Bsin(p — d) + sina sin(a — &) > 0 because § < 7
and B > 6, a > 4. By the formula sinxcosy = 1 (sin(x +y) + sin(x — y)),
we get sin Bcos(f — 0) — sinacos(a — §) = J(sin(2B — &) — sin(2a — 9)).
Now a + B —J < Z implies (28 —6) + (20 — §) < m, i.e, there exists a
triangle whose two angles are 2 — 6 and 2« — 4. But 2 — 6 > 2a — 4 since
B > a, therefore the law of sines in that triangle implies sin(2 — §) >
sin(2a — J) (the larger the angle, the large its opposite side in a triangle).
Hence the second factor in the Lh.s. of equation (1) is positive. Altogether,
we obtain cos ¢ > 0, whence ¢ < 5.

Remark. This problem can also be solved by coordinates.

Second day

S4. Let ABC be a triangle where |AB| = |AC|. Points P and Q are differ-
ent from the vertices of the triangle and lie on the sides AB and AC, respec-
tively. Prove that the circumcircle of the triangle APQ passes through the
circumcenter of ABC if and only if |AP| = |CQ)|.
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Solution. Without loss of generality, we A
can assume that |[AP| < |AQ|. Let O be
the circumcenter of ABC. Let R be the in- p
tersection point of the bisector of ZBAC
with the circumcircle of the triangle PAQ

— we then have |RB| = |RC| (Fig. 21). 0
Also, ZAPR = 180° — ZAQR = /CQR o

and [RP| = |RQ| (since ZRAP = ZRAQ). g C
So, |AP| = |CQ| <= AAPR = ACQR

<= |RA| =|RC| <= R = O (where Fig. 21

|IRA| = |RC| = AAPR = ACQR by two sides and obtuse angle).

Remark. This problem has been taken from the booklet “The Coins of
Harpland and 20+10 other maths problems from Ireland” (edited by Bernd
Kreussler), its author is Jim Leahy. The solution here is new.

S5. Let x, y, z be positive real numbers whose sum is 2012. Find the max-
imum value of
v (2 + 12 +22) (P 4P +28)
(x* +yt +24) )

Answer: 2012.

2 2 2 3 3 3
Solution. If x =y =z = &312, then & W(;i;gi;g +2°) — 2012. Now we

prove that for all x, y, z satisfying the premises we have
(2 + 2 +22) (3 +y° +2%)
(¥t +y* +2%)
It suffices to show that (x? + y? +2z2)(x3 + y3 +2%) < 2012(x* +y* + z%), or
(P +y?+22) (B3 + 3 +28) < (x +y+2)(x* + y* + z*). Multiplying out,
simplifying and rearranging the terms gives xy(x —y)(x? — y?) + xz(x —
z)(x* — 2%2) + yz(y — z) (y> — z%) > 0. Since the differences in the brackets
in every product have equal signs, the products are non-negative, showing
that the necessary inequality holds.
Remark. The inequality that we get after multiplying out and canceling
x%, y°, 2°, is a special case of Muirhead inequality (with exponent vectors
(4,1,0) and (3,2,0)).

< 2012.

S6. Onanm x mboard, at the midpoints of the unit squares there are some
ants. At the time 0 each ant starts moving with speed 1 parallel to some
edge of the board until it meets an ant moving in the opposite direction
or until it reaches the edge of the board. When two ants moving in the
opposite direction meet each other, both turn 90° clockwise and continue
moving parallel to another edge of the board. Upon reaching the edge of
the board the ant falls off the board.

a) Prove that eventually all the ants will have fallen off the board.
b) Find the latest possible moment for the last ant to fall off the board.
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Answer: b) %m -1

Solution 1. Let the lower left corner of the board be the origin. Divide
the units of time and space by 2; then the squares are of dimensions 2 x 2,
the coordinates of the midpoints of the squares are odd positive integers,
and the speed of the ants is still 1.

We prove by induction that at integer time moments the coordinates of
the ants are integers and the sum of the coordinates for any fixed ant has
the same parity as the time moment. In addition, the ants can meet only at
integer time moments. At time t = 0 all coordinates of the ants are odd,
so their sum is even. Suppose that at an integer time moment t = k the
coordinates of the ants are integers and the sum of the coordinates for any
fixed ant has the same parity as the time moment. If two of the ants were
to meet each other within the next time unit, they have to move toward
each other from time t = k, hence one of their coordinates must be the
same. Since the parity of the sum of their coordinates was the same at time
t = k, another of their coordinates had to differ by at least 2. Hence they
cannot meet before time t = k + 1. Between time moments { = k and
t = k + 1 every ant has changed only one of its coordinates by 1, hence at
time t = k 4 1 the parity of the sum of the coordinates is again the same as
the parity of the time moment.

Next we will prove by induction that for any point with integer coor-
dinates (x,y) there are no collisions at this point after the time moment
t = x+y — 2. For x = y = 1 this is obviously true, since there are no colli-
sions in the middle of the lower left square (otherwise one of the ants has to
arrive to this point from the edge of the board). Let (x,y) be arbitrary and
suppose that the claim holds for all points with the sum of the coordinates
less than x + y. Suppose that a collision takes place at point (x, y) at time ¢.
One of the participants had to arrive from a point, where one of the coordi-
nates was smaller; w.l.o.g. we can assume that this was the x-coordinate. If
this ant has not collided with anyone before, then t <x —1 < x+y —2. If
the last collision of this ant occurred at time +/ < ¢, then the coordinates
of the last collision were (x — (t — t'),y). By the induction assumption
' <x—(t—t)+y—2hencet <x+y—2.

By symmetry the claim holds when another corner is chosen as the ori-
gin. Let the last collision of a particular ant occur at the point (x,y), where
the coordinates are taken with respect to the nearest corner. W.Lo.g., we
can assume x < y. The time from the last collision to the falling off the
edge of the ants participating in the collision is at most 2m — x, hence the
time elapsed from the start is at most x + y — 2 + 2m — x < 3m — 2. By this
time all ants have fallen off the edge. With respect to the original units the
maximal time is %m -1

For any m the maximal time can be achieved, if in the beginning there
are 2 ants at the adjoining corners of the board moving toward each other.
At the moment t = “L the pair collides and one of the ants starts moving
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toward the center, falling off the board at time t = %m -1

Solution 2. Part a) can also be solved as follows. For each ant consider
the distance to the edge in the direction of its motion. After an ant falls
this distance will remain 0. Observe that as long as an ant moves without
collision, this distance decreases with speed 1.

Consider now the sum of all such distances. When a collision happens,
the sum of the distances of the two corresponding ants is m, both right
before and right after the collision. Thus as long as there are ants left on
the board, the total sum decreases with the speed of at least 1. Since in the
beginning this sum is a finite number, after some time this sum will become
0 and thus all ants will have fallen off the board.

Remark. This problem, proposed by Estonia, appeared in the IMO 2011
shortlist as C5.
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