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Mathematics Contests in Estonia

The Estonian Mathematical Olympiad is held annually in three rounds – at the school,
town/regional and national levels. The best students of each round (except the final)
are invited to participate in the next round. Every year, about 110 students altogether
reach the final round.

In each round of the Olympiad, separate problem sets are given to the students of each
grade. Students of grade 9 to 12 compete in all rounds, students of grade 7 to 8 partici-
pate at school and regional levels only. Some towns, regions and schools also organise
olympiads for even younger students. The school round usually takes place in Decem-
ber, the regional round in January or February and the final round in March or April in
Tartu. The problems for every grade are usually in compliance with the school curricu-
lum of that grade but, in the final round, also problems requiring additional knowledge
may be given.

The first problem solving contest in Estonia took place already in 1950. The next one,
which was held in 1954, is considered as the first Estonian Mathematical Olympiad.

Apart from the Olympiad, open contests are held twice a year, usually in October and
in December. In these contests, anybody who has never been enrolled in a university
or other higher education institution is allowed to participate. The contestants compete
in two separate categories: the Juniors and the Seniors. In the first category, students
up to the 10th grade are allowed to participate; the other category has no restriction.
Being successful in the open contests generally assumes knowledge outside the school
curriculum.

According to the results of all competitions during the year, about 20 IMO team candi-
dates are selected. IMO team selection contest for them is held in April or May. This
contest lasts two days; each day, the contestants have 4.5 hours to solve 3 problems, sim-
ilarly to the IMO. All participants are given the same problems. Some problems in our
selection contest are at the level of difficulty of the IMO but somewhat easier problems
are usually also included.

The problems of previous competitions can be downloaded from
http://www.math.olympiaadid.ut.ee/eng.

Besides the above-mentioned contests and the quiz “Kangaroo” some other regional
competitions and matches between schools are held as well.

*

This booklet contains problems that occurred in the open contests, the final round of
national olympiad and the team selection contest. For the open contests and the final
round, selection has been made to include only problems that have not been taken from
other competitions or problem sources and seem to be interesting enough. The team
selection contest is presented entirely.
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Selected Problems from Open Contests

O-1. (Juniors.) Nonzero integers a, b and c satisfy
1
a
+

1
b
+

1
c
= 0. Prove that among a,

b, c there are two integers which have a common divisor larger than 1.
Solution: Multiplying the given equation by abc we get bc + ca + ab = 0. If a, b, c were
all odd, then bc, ca and ab were also odd and their sum could not be 0. If one of the
numbers a, b, c was even and the others were odd, then two of the numbers bc, ca and
ab were even and one odd, which also would not add up to 0. Hence at least two of the
numbers a, b, c are even, which satisfy the conditions.

O-2. (Juniors.) Teacher tells Jüri two nonzero integers a and b such that b is divisible by
a. Jüri has to find a nonzero integer c such that c is divisible by b and all solutions of the
quadratic equation ax2 + bx + c = 0 are integers. Can Jüri always solve the problem?
Answer: Yes.
Solution: By the conditions of the problem there is an integer q such that b = aq. Let
c = −2aq2; then c 6= 0 and c is divisible by b. The quadratic equation ax2 + bx + c = 0
or ax2 + aqx− 2aq2 = 0 has solutions q and −2q.

O-3. (Juniors.) Inside a circle c with the center O there are two circles c1 and c2 which
go through O and are tangent to the circle c at points A and B crespectively. Prove that
the circles c1 and c2 have a common point which lies in the segment AB.
Solution: The radius AO of the circle c is perpendicular to the common tangent to cir-
cles c and c1 at the point A, hence AO is a diameter of the circle c1. Similarly BO is a
diameter of the circle c2. If the circles c1 and c2 are tangent at the point O (Fig. 1), then
the diameters AO and BO are both perpendicular to the common tangent to c1 and c2 at
the point O, whence the lines AO and BO coincide, i.e. O lies in the segment AB. If the
circles c1 and c2 intersect at O (Fig. 2), then let M be the other intersection point of the
circles. Since ∠AMO = 90◦ and ∠BMO = 90◦ (angles at the circumference supported
by a diameter), the lines AM and BM coincide and M lies in the segment AB.

O-4. (Juniors.) Numbers 1, . . . , 200 are written on a blackboard in one line. Juku has to
write in front of each number plus or minus sign so that for any positive integer n ≤ 100
the number itself and one of its multiples have different signs. Which numbers must he
assign a minus sign in order to get the maximal possible value of the expression?
Answer: The numbers 51, . . . , 100.
Solution: If Juku writes a minus in front of the number 51, . . . , 100 and a plus in front
of the others, then the conditions of the problem are satisfied: for 51 ≤ n ≤ 100, the
numbers n and 2n have different signs; for n ≤ 50 there is at least one multiple of n
among the numbers 51, . . . , 100.
To show that this arrangement of the signs gives the maximal value of the expression,
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consider an arbitrary arrangement of signs satisfying the conditions of the problem.
Then always when 100 ≥ n ≥ 67 and n has a plus sign, 2n must have a minus sign.
Also when 66 ≥ n ≥ 51 and n has a plus sign, then either 2n or 3n must have a minus
sign. If we change all the pluses in front of the numbers n with 100 ≥ n ≥ 51 to minuses,
and the minuses in front of the corresponding 2n or 3n to pluses, then changing minus
to plus in front of m corresponds to changing plus to minus in front of

m
2

or
m
3

or

both. Since
m
2
+

m
3

< m, the changes increase the value of the expression. Then we
can also change all remaining minuses in front of the numbers 1, . . . , 50 and 101, . . . , 200
to pluses, which also can only increase the value of the expression. This results in the
arrangement of the signs described in the beginning. Hence this arrangement gives the
maximal value of the expression.

O-5. (Juniors.) Kärt writes the fractions
1
2

and
1
3

on the blackboard and Märt writes

10 positive integers on the paper, which he does not show to Kärt. Then Kärt starts to
write fractions on the blackboard by the following rule: on each step she chooses two
fractions

a
b

and
c
d

which are already on the blackboard and writes on the blackboard

the fraction
a + c
b + d

after reducing. Can Kärt always choose the fractions so that after a
number of steps she writes on the blackboard a fraction whose denominator is coprime
with all the numbers Märt has written on the paper?
Answer: Yes.

Solution: The first fraction that Kärt adds to the blackboard has to be
2
5

. On every fol-

lowing move, let Kärt pick
1
2

as one fraction and the latest written fraction as the other
fraction. Ignoring the reducing step, this means that the denominator of every added
fraction is larger than the previous fraction by 2, or that the denominators of the frac-
tions are consecutive odd numbers. This is indeed the case, because all fractions added

in this way are irreducible (these fractions have the form
k

2k + 1
, and k is always coprime

with 2k + 1 because any common divisor would also divide (2k + 1)− 2k = 1).
Therefore the denominators of the fractions that Kärt writes include all prime numbers
except 2. Since there are infinitely many prime numbers, Kärt will eventually write a

3



fraction with a prime denominator that is larger than all of the numbers written by Märt,
and hence coprime with them.

O-6. (Juniors.) Publisher Soothsayer published a reference book claiming that for each
real number x and positive even number n the equality (1 + x)n ≥ 2nx holds. Is this
claim true?
Answer: No.

Solution: The inequality does not hold for example when x =
1
2

and n = 4.

Remark: This is a plausible mistake, because a similar inequality (1 + x)n ≥ 2nx holds
for any real number x and positive even integer n.

O-7. (Juniors.) In an isosceles right triangle ABC the right angle is at vertex C. On the
side AC points K, L and on the side BC points M, N are chosen so that they divide the
corresponding side into three equal segments. Prove that there is exactly one point P
inside the triangle ABC such that ∠KPL = ∠MPN = 45◦.
Solution: Without loss of generality let the points on the side AC be in the order A, K,
L, C and on the side BC in the order C, M, N, B (see Fig. 3). Choose the point P so that the
quadrilateral LCMP is a square. Then |KL| = |LC| = |LP| and |MN| = |CM| = |MP|,
i.e. KLP and PMN are isosceles right triangles, so ∠KPL = ∠MPN = 45◦. Since
∠KPN = 45◦ + 90◦ + 45◦ = 180◦, the point P lies inside the segment KN, whose all
points except the endpoints are inside the triangle ABC.
To show that P is the only point with the required properties, let P′ be an arbitrary point
inside the triangle ABC which satisfies ∠KP′L = ∠MP′N = 45◦. Since P and P′ are on
the same side of the line KL and ∠KPL = ∠KP′L, the point P′ lies on the circumcircle
of the triangle KPL; similarly it also lies on the circumcircle of the triangle MPN. Since
∠KLP = ∠PMN = 90◦, the segments KP and PN are the diameters of the circles.
Since the diameters KP and PN lie on the same straight line KN, they have a common
perpendicular at the point P which is tangent to both circles at this point. Hence the
point P is the only common point of these circles, i.e. P′ = P.

O-8. (Juniors.) The numbers 1, 2, . . . , 2012 are written on the blackboard in some
order, each of them exactly once. Between each two neighboring numbers the absolute
value of their difference is written and the original numbers are erased. This is repeated
until only one number is left on the blackboard. What is the largest possible number
that can be left on the blackboard?
Answer: 2010.
Solution: The largest number on the blackboard cannot increase on any step, because the
absolute value of the difference of two nonnegative numbers cannot be greater than the
maximum of these two numbers. Since in the beginning all the numbers are different
and positive, after the first step the largest possible number is 2011 and the smallest
possible number is 1. After the second step the largest possible number is 2010 and
hence the number left on the blackboard in the end cannot be larger than 2010.
The number 2010 can be left on the blackboard, for example when in the begin-
ning the numbers are written in the order 2012, 1, 2, 3, . . . , 2011. Then after the first
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step there are the numbers 2011, 1, 1, . . . , 1, and after the second step the numbers
2010, 0, 0, . . . , 0. On each following step the number of zeroes decreases by one and
in the end only the number 2010 remains.

O-9. (Juniors.) Find all pairs of integers (a, b) satisfying (a + 1)(b− 1) = a2b2.
Answer: (0, 1) and (−1, 0).
Solution: Since a and a + 1 are coprime, a2 and a + 1 are also coprime. Similarly b2

and b− 1 are coprime. Hence the equality can hold only in the case a + 1 = ±b2 and
b− 1 = ±a2, where the signs in both equations are the same.
Let both signs be pluses. Then from the first equation we get a = b2− 1 = (b− 1)(b+ 1).
The second equation implies b− 1 = a2, whence a = a2(a2 + 2). If a = 0, then b = 1, i.e.
(a, b) = (0, 1). If a 6= 0, then by dividing by a we get 1 = a(a2 + 2); since a2 + 2 > 1, this
equation does not have integer solutions.
If both signs are minuses then by multiplying by −1 we get −b + 1 = a2 and −a− 1 =
b2. These are the same equations with respect to −b and −a which we had previously
with respect to a and b, hence the only solution is −b = 0, −a = 1 i.e. (a, b) = (−1, 0).

O-10. (Seniors.) Find all positive integers which are exactly 2013 times bigger than the
sum of their digits.
Answer: 36234.
Solution: Note that the minimal value of a k-digit number is 10k−1 and the maximal value
of the cross-sum multiplied by 2013 is 9k · 2013. Since 9 · 7 · 2013 = 126819 < 1000000
we can consider only numbers with up to 6 digits. Since then the cross-sum is at most
54, it is enough to consider numbers in the form n · 2013 with 1 ≤ n ≤ 54.
Since 2013 is divisible by 3, n · 2013 and its cross-sum are divisible by 3. Since the cross-
sum must be equal to n, n · 2013 is divisible by 9. But then its cross-sum and hence also n
is divisible by 9. It remains to consider the cases n = 9, 18, . . . , 54 which can be checked
by hand and see that only n = 18 satisfies the conditions.

O-11. (Seniors.) Find all remainders which one can get when dividing by 6 an integer
n which satisfies n3 = m2 + m + 1 for some integer m.
Answer: 1.
Solution: Numbers n and n3 give the same remainder when dividing by 6. Also, m2 +
m + 1 is odd and gives the remainder 0 or 1 when dividing by 3. The only possibility to
get 0 as the remainder is when m = 3k + 1, but then

n3 = (9k2 + 6k + 1) + (3k + 1) + 1 = 9k2 + 9k + 3 = 3(3k2 + 3k + 1)

which leads to a contradiction, since if n3 is divisible by 3, it is also divisible by 33, but
3k2 + 3k + 1 is not divisible by 3. Hence the remainder of n3 is 1 both when dividing by
2 or 3, consequently its remainder when dividing by 6 is 1.
The remainder 1 is possible: take n = 1 and m = 0 (or n = 7 and m = 18).

O-12. (Seniors.) Prove that for any integer n ≥ 3 we have (2n)! < n2n.

5



Solution 1: For n = 3 the claim holds: (2n)! = 6! = 720 and n2n = 36 = 729.
Suppose n ≥ 4. Divide the numbers 2, 3, . . . , 2n− 2 into pairs (k, 2n− k) with 2 ≤ k ≤
n− 1, leaving n alone. For each pair we have

k(2n− k) = (n− (n− k))(n + (n− k)) = n2 − (n− k)2 < n2.

Hence 2 · 3 · . . . · (2n− 2) < (n2)n−2 · n = n2n−3, therefore

(2n)! < 1 · n2n−3 · (2n− 1) · (2n) < n2n−3 · (2n)2 = 4n2n−1 ≤ n2n.

Solution 2: For n = 3 the claim holds. Suppose the claim holds for n; to show that it also

holds for n+ 1 it is enough to show the inequality (2n+ 1)(2n+ 2) <
(n + 1)2n

n2n (n+ 1)2.

Since (2n+ 1)(2n+ 2) < (2n+ 2)2 = 4(n+ 1)2, it is enough to show that
(n + 1)2n

n2n > 4.

This is equivalent with
(

1 +
1
n

)n
> 2 which holds for all n ≥ 2.

O-13. (Seniors.) Inside a circle c there are circles c1, c2 and c3 which are tangent to
c at points A, B and C correspondingly, which are all different. Circles c2 and c3 have
a common point K in the segment BC, circles c3 and c1 have a common point L in the
segment CA, and circles c1 and c2 have a common point M in the segment AB. Prove
that the circles c1, c2 and c3 intersect in the center of the circle c.
Solution: Take a point X on the common tangent to the circles c1 and c which lies on the
other side of the line AB from the point C. Then ∠ALM = ∠XAM = ∠XAB = ∠ACB

(Fig. 4). Consequently ML ‖ BC. Similarly KM ‖ CA and LK ‖ AB. If
|AM|
|AB| = λ, then

|BK|
|BC| =

|BM|
|BA| = 1− λ and

|CL|
|CA| =

|CK|
|CB| = 1− (1− λ) = λ, whence λ =

|AM|
|AB| =

|AL|
|AC| = 1− λ. Hence λ =

1
2

, therefore the triangles AML, MBK and LKC are all similar

to ABC with the factor
1
2

. Thus the radii of their circumcircles c1, c2 and c3 are equal to
half of the radius of the circumcircle c of the triangle ABC. Since the circles c and c1 are
tangent, the diameter of c1 and the radius of c, both drawn from the tangent point A,
coincide. Hence the circle c1 goes through the center of the circle c; similarly the circles
c2 and c3 go through the center of the circle c.

O-14. (Seniors.) For which positive integers m and n is it possible to write the numbers
1, 2, . . . , 2mn into the white squares of a 2m × 2n checkerboard in such a way that the
sum of the numbers in every row is the same, and the sum of the numbers in every
column is the same?
Answer: For all even m and n, except when m = n = 2.
Solution: All the numbers sum up to mn(2mn + 1). For odd m this is not divisible by 2n,
breaking the equality of all column sums. Thus m and likewise also n cannot be odd.
In the case m = n = 2 we cannot write the numbers as required, because the numbers
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in the squares marked by ∗ in Fig. 5 must be equal.
Let us show that in the white squares of a 4× 8 checkerboard we can write the numbers
k + 1, k + 2, . . . , k + 8 and 2mn − k − 7, 2mn − k − 6, . . . , 2mn so that the sums of the
numbers in rows are the same, and the sums of the numbers in columns are the same.
One possibility is the following, where P stands for 2mn:

k + 1 P− k− 2 k + 8 P− k− 5
k + 2 P− k− 3 k + 7 P− k− 4

P− k k + 3 P− k− 7 k + 6
P− k− 1 k + 4 P− k− 6 k + 5

Here the sums in the columns are 2mn + 1 and the sums in the rows are 4mn + 2.
One can also write the numbers 1, 2, . . . , 12 and 2mn− 11, 2mn− 10, . . . , 2mn on a 4× 12
checkerboard in the required way, where P stands for 2mn again:

1 6 12 P− 3 P− 4 P− 9
3 8 9 P− 1 P− 6 P− 10

P P− 5 P− 11 4 5 10
P− 2 P− 7 P− 8 2 7 11

If one of the numbers m and n is even and the other is divisible by 4, then we can
cover the 2m× 2n checkerboard with 4× 8 checkerboards and fill them as above, taking
k = 0, 8, . . . , mn− 8 in different small checkerboards. If neither m nor n is divisible by
4 and one of them is at least 6 then we can cover the checkerboard with one 4× 12 and
4× 8 checkerboards and in the 4× 8 checkerboards take k = 12, 20, . . . , mn− 8.

O-15. (Seniors.) Let a and b be positive integers such that b is divisible by a and writing

a and b one after another in this order gives (a + b)2. Prove that
b
a
= 6.

Solution: Let n be the number of digits of b and let b = ka. Then by the conditions of the
problem, 10n · a + ka = (a + ka)2, or

a =
10n + k
(k + 1)2 . (1)

If k were odd, then the numerator on the r.h.s. of (1) would be odd and the denominator
even, so a could not be an integer. Hence k is even.
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If k = 2 then the cross-sum of 10n + 2 is 3, which is not divisible by (2 + 1)2 = 9. The
case k = 4 also leads to a contradiction, since 10n + 4 ends with 4, hence cannot be
divisible by (4 + 1)2 = 25. Thus k ≥ 6.
In the following we show first that k ≤ 8 and finally that k 6= 8. The assumptions
ka = b ≥ 10n−1 give 10ka ≥ 10n. Equality (1) implies

10n = (k + 1)2 · a− k = k2a + 2ka + a− k = (k + 2) · ka + a− k .

Thus 10ka ≥ (k + 2) · ka + a− k, whence

(8− k) · ka ≥ a− k . (2)

As a is positive, (8− k) · ka > −k. As both sides of this inequality are divisible by k, this
implies (8− k) · ka ≥ 0. Consequently 8− k ≥ 0, i.e., k ≤ 8.

If k = 8, the inequality (2) implies a ≤ 8 whereas the equality (1) reduces to a =
10n + 8

81
.

Hence a ends with digit 8, leaving a = 8 and b = 8 · 8 = 64 as the only possibility. But
864 6= (8 + 64)2, contradicting the conditions of the problem.
Remark: It is not hard to show that the smallest numbers satisfying the conditions of

the problem are a =
1036 + 6

49
= 20408163265306122448979591836734694 and b = 6a =

122448979591836734693877551020408164.

O-16. (Seniors.) Let x and y be different positive integers. Prove that
x2 + 4xy + y2

x3 − y3 is

never an integer.
Solution 1: By symmetry we can assume that x > y. If x− y = 1, then

x2 + 4xy + y2

x3 − y3 =
x2 + 4xy + y2

(x− y)(x2 + xy + y2)
=

(x− y)2 + 6xy
(x− y)

(
(x− y)2 + 3xy

) =

=
1 + 6xy
1 + 3xy

= 1 +
3xy

1 + 3xy
,

which is clearly not an integer. If x− y ≥ 2, then

x2 + 4xy + y2

x3 − y3 =
x2 + 4xy + y2

(x− y)(x2 + xy + y2)
≤ x2 + 4xy + y2

2(x2 + xy + y2)
<

<
2x2 + 2xy + 2y2

2(x2 + xy + y2)
= 1 ,

where the last inequality follows from x2 − 2xy + y2 = (x− y)2 > 0.

Solution 2: If
x2 + 4xy + y2

x3 − y3 were an integer, then

x2 + 4xy + y2

x3 − y3 · (x− y)− 1 =
3xy

x2 + xy + y2
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would also be an integer. As 3xy > 0 and x2 + xy + y2 > 0, we have 3xy ≥ x2 + xy + y2,
whence (x− y)2 ≤ 0. Hence x = y, which contradicts the conditions of the problem.

O-17. (Seniors.) Circles c1, c2 with centers O1, O2, respectively, intersect at points P
and Q and touch circle c internally at points A1 and A2, respectively. Line PQ intersects
circle c at points B and D. Lines A1B and A1D intersect circle c1 the second time at
points E1 and F1, respectively, and lines A2B and A2D intersect circle c2 the second time
at points E2 and F2, respectively. Prove that E1, E2, F1, F2 lie on a circle whose center
coincides with the midpoint of line segment O1O2.

Solution: Let the radii of c1, c2 and c be r1, r2 and r, respectively. Homothety of ratio
r
r1

with center A1 takes circle c1 to circle c and points E1, F1 to points B, D, respectively.
Thus it takes line E1F1 to line BD. Analogously, homothety of ratio

r
r2

with center A2

takes line E2F2 to line BD. Consequently, lines E1F1 and E2F2 are parallel to line BD
(Fig. 6).
Furthermore, note that |BE1| · |BA1| = |BP| · |BQ| and |BE2| · |BA2| = |BP| · |BQ|,
implying |BE1| · |BA1| = |BE2| · |BA2|. Thus triangles BE1E2 and BA2A1 are similar
and

∠BE1E2 = ∠BA2A1 = ∠BDA1 = ∠E1F1A1 =
1
2
∠E1O1A1 = 90◦ −∠O1E1A1 , (3)

whence

∠E2E1O1 = 180◦ −∠BE1E2 −O1E1A1 = 90◦ . (4)

Analogously, ∠E1E2O2 = 90◦. Hence the quadrilateral E1E2O2O1 is a right-angled
trapezoid (or rectangle in the case r1 = r2) and the midpoint of the line segment O1O2
lies on the perpendicular bisector of the line segment E1E2, thus being equidistant from
E1 and E2. Analogously, the midpoint of the line segment O1O2 is also equidistant from
F1 and F2.
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As line O1O2 is perpendicular to BD, line O1O2 is also perpendicular to E1F1. Thus the
line segment O1O2 entirely lies on the perpendicular bisector of E1F1. This means that
the midpoint of line segment O1O2 is equidistant from E1 and F1.
Altogether, we have shown that these four points lie on a circle with its center at the
midpoint of the line segment O1O2.
Remark: The chains of equations (3) and (4) hold as given in the situation depicted in
Fig. 6, where F1 and O1 lie at the same side from line A1E1. There are other situations
where F1 and O1 lie at different sides from A1E1 or O1 lies on the line A1E1 or circle c lies
inside circles c1 and c2 (see Fig. 7). Despite the equations having a little different form,
the final result ∠E2E1O1 = 90◦ still holds.

O-18. (Seniors.) Eha and Koit play the following game. In the beginning of the game
at each vertex of a square there is an empty box. At each step each player has two
possibilities: either add one stone to an arbitrary box, or to move each box clockwise to
the next vertex of the square.
Koit begins and they make in turns 2012 steps (each player 1006). Then Koit marks one
of the vertices of the square and lets Eha make one more step. Koit wins if after this step
the number of stones in some box is larger than the number of stones in the box at the
vertex Koit marked; otherwise Eha wins. Which player has a winning strategy?
Answer: Eha.
Solution: First show that Eha can guarantee that before Koit’s move the number of stones
in the boxes lying at opposite corners of the square are equal. In the beginning it is true,
since all the boxes are empty. Let before Koit’s move the numbers of stones in the boxes
be (a, b, a, b). If Koit adds one stone to a box, then Eha can add a stone to the box at the
opposite corner; if Koit moves the boxes cyclically, Eha also moves the boxes cyclically,
so the condition still holds. Hence Eha can make the moves so that after step 2012 the
numbers of the stones in the boxes are (a, b, a, b). Without loss of generality we can
assume that a ≥ b. If Koit marks a vertex with a box with a stones then Eha adds one
stone to the box and wins. If Koit marks a vertex with a box with b stones, then Eha
moves the boxes cyclically and still wins.

O-19. (Seniors.) Find all functions f from the set of all positive integers to the same set
such that, for all positive integers a1, . . . , ak with k > 0, the sum a1 + . . . + ak divides the
sum f (a1) + . . . + f (ak).
Answer: All functions given by f (n) = an, a ∈N.
Solution: Suppose that f is a function that satisfies the conditions of the problem. We
claim that f (n) = f (n− 1) + f (1) for all integers n > 1. Indeed, for any integer m > n,
we have m | f (n) + f (m− n) and m | f (n− 1) + f (1) + f (m− n) by conditions of the
problem. Hence the difference f (n)− ( f (n− 1) + f (1)) is also divisible by m. As m was
arbitrary, this implies that f (n)− ( f (n− 1) + f (1)) is divisible by an infinite number of
different integers, i.e., is equal to 0. This completes the proof of the claim.
Easy induction now gives that necessarily f (n) = n f (1). It is straightforward to verify
that all functions of the form f (n) = an satisfy the conditions of the problem.
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Selected Problems from the Final Round of National
Olympiad

F-1. (Grade 9.) Consider hexagons whose internal angles are all equal.

(i) Prove that for any such hexagon the sum of the lengths of any two neighbouring
sides is equal to the sum of the lengths of their opposite sides.

(ii) Does there exist such a hexagon with side lengths 1, 2, 3, 4, 5 and 6 in some order?

Answer: ii) Yes.
Solution 1:

(i) Let the hexagon be ABCDEF. It suffices to show that |AB|+ |BC| = |DE|+ |EF|.
Let K be the intersection point of rays FA and CB and let L be the intersection
point of rays FE and CD (Fig. 8). The size of every internal angle of the hexagon
is 120◦, whence triangles KAB and LDE are equilateral. The quadrilateral FKCL
is a parallelogram since its opposite sides are parallel. This implies |KC| = |LF|
or |KB|+ |BC| = |LE|+ |EF|, which together with |KB| = |AB| and |LE| = |DE|
implies the desired equality |AB|+ |BC| = |DE|+ |EF|.

(ii) Take a parallelogram with side lengths 7 and 5 and internal angles 60◦ and 120◦,
and cut off equilateral triangles with side lengths 1 and 2 at its acute angles. This
gives rise to a hexagon with all internal angles having size 120◦ and side lengths 1,
4, 5, 2, 3, 6 (Fig. 9).

Solution 2:

(i) Note that the external angles of the hexagon have size 60◦. Any two opposite sides
of the hexagon are parallel, as they are separated by exactly three external angles.
Consider a line s perpendicular to opposite sides CD and FA of the hexagon
ABCDEF (Fig. 10). As all other sides form the same angle 30◦ with line s, the
lengths of these sides are proportional to the lengths of the projections of the sides
to line s. The sum of the lengths of the projections of sides AB and BC is equal
to the distance between the parallel lines CD and FA and the same holds also for
the opposite sides DE and EF. Therefore the sum of the lengths of the projections
of sides AB and BC is equal to that of sides DE and EF, whence the sums of the
lengths of the sides are equal as well.

A

B

C D

E

F

K

L

Figure 8

1

4

5

2

3
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1

2

2

Figure 9
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(ii) Figure 11 shows a hexagon in a triangular grid with distance between neighbouring
nodes being 1. The side lengths of the hexagon are 1, 4, 5, 2, 3 and 6.

Solution 3: Consider two types of transformations on hexagons that maintain the prop-
erty that all internal angles are of the same size.

(1) Prolonging two opposite sides by the same quantity x (Fig. 12); this causes the side
lengths to change according to the template

(a, b, c, d, e, f )←→ (a+x, b, c, d+x, e, f ) .

(2) Prolonging the two neighbouring sides of one particular side by the same quantity
x (Fig. 13); this causes the side lengths to change according to the template

(a, b, c, d, e, f )←→ (a+x, b−x, c+x, d, e, f )

A straightforward check shows that both transformations maintain the desired prop-
erty, no matter of in which direction the transformations are applied.

(i) As the internal angles of all regular hexagons are equal, it suffices to show that
an arbitrary hexagon with all internal angles equal can be turned into a regular
hexagon by a finite sequence of the transformations above.
Indeed, let the side lengths of a given hexagon with all internal angles equal be
(a, b, c, d, e, f ). Assume w.l.o.g. that d ≥ a and f ≥ c. Choose a quantity s such
that s ≥ max(a, b, c); by applying the transformation (1) thrice, we can obtain a
hexagon with three consecutive sides having the same length:

(a, b, c, d, e, f )
(1)−→ (s, b, c, d′, e, f )

(1)−→ (s, s, c, d′, e′, f )
(1)−→ (s, s, s, d′, e′, f ′) .

12



By the assumption made above we have d′ ≥ s and f ′ ≥ s. W.l.o.g., assume also
d′ ≤ f ′. The transformation

(s, s, s, d′, e′, f ′)
(2)−→ (s, s, s, s, e′′, f ′′)

leads to a hexagon with four consecutive sides of equal length. But this must be
regular since all of its internal angles are equal (Fig. 14).

(ii) Such a hexagon can be obtained from a regular hexagon with side length 1 by the
following transformations:

(1, 1, 1, 1, 1, 1)
(1)−→ (1, 4, 1, 1, 4, 1)

(1)−→ (1, 4, 5, 1, 4, 5)
(2)−→ (1, 4, 5, 2, 3, 6) .

F-2. (Grade 9.) Two children are playing noughts and crosses with changed rules.
In each move, either of the players may draw into an empty square of a 3× 3 board
either a nought or a cross according to one’s wish. Moves are made alternately and the
winner is the one after whose move a row, a column or a long diagonal becomes filled
with three similar signs. Is there a player with a winning strategy, and if yes then who?
Answer: Yes, the first player.
Solution: The first player may play the first move into the middle square and, later
on, make the immediately winning move if there is any and play symmetrically to the
opponent’s last move w.r.t. the center of the board otherwise.
Suppose that the opponent wins. As the central square is occupied, the winning move
must be played either into a corner or in the middle of an edge of the board. According
to the first player’s strategy, the position before the winning move was symmetric w.r.t.
the center of the board. Consequently, the square symmetric to the winning move is
empty in the final position, which in turn implies that the three signs of the same type
appear along an edge of the board. Before the winning move, there must already have
been two of these signs present and, by symmetry, similarly also at the opposite edge.
Three of these four signs must already have been there before the last move of the first
player. As two of these three must have been in one line, the first player could win in
her last move, which contradicts the chosen strategy.
Remark: It is also easy to argue by case study.

F-3. (Grade 10.) Can 2013 be represented as the difference of two cubes of integers?
Answer: No.
Solution 1: Suppose that 2013 = x3 − y3 where x and y are integers. Note that

x3 − y3 = (x− y)3 + 3x2y− 3xy2 = (x− y)3 + 3xy(x− y) .

As 2013 is divisible by 3 and so is 3xy(x− y), the difference (x− y)3 must be divisible
by 3. Thus also x− y is divisible by 3 as 3 is prime. Consequently, 3xy(x− y) is divisible
by 32 and (x− y)3 is divisible by 33, whence the sum x3− y3 is divisible by 32. But 2013
is not divisible by higher powers of 3. The contradiction shows that 2013 cannot be
represented as the difference of two cubes of integers.

13
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Solution 2: Suppose that 2013 = x3 − y3 where x and y are integers. Then x3 ≡ y3

(mod 3). As integers are congruent to their cubes modulo 3, this gives x ≡ y (mod 3).
Now write 2013 = (x − y)(x2 + xy + y2). By the congruence obtained above, the first
factor in the r.h.s. is divisible by 3 and the terms x2, xy and y2 in the second factor are
all congruent modulo 3 whence x2 + xy + y2 is divisible by 3. Altogether, the product
(x− y)(x2 + xy + y2) must be divisible by 9, but 2013 is not.
Remark: It is possible to solve this problem by brute force in several ways.

F-4. (Grade 10.) The bases of trapezoid ABCD are AB and CD, and the intersection

point of its diagonals is P. Prove that if
|PA|
|PD| =

|PB|
|PC| then the trapezoid is isosceles.

Solution 1: By assumptions,
|PA|
|PB| =

|PD|
|PC| . As the bases AB and CD are parallel, we

have also
|PA|
|PB| =

|PC|
|PD| (Fig. 15). Hence |PC| = |PD|. Similarity of triangles APD and

BPC implies
|AD|
|BC| =

|PD|
|PC| = 1, thus |AD| = |BC| as needed.

Solution 2: By assumptions, triangles APD and BPC are similar. Thus ∠ADB = ∠ACB
(Fig. 16), showing that quadrilateral ABCD is cyclic. But if a quadrilateral with parallel
opposite sides has a circumcircle, the bisectors of these sides coincide as they have the
same direction and both pass through the circumcenter of the quadrilateral (Fig. 17). By
symmetry w.r.t. this line, the other pair of opposite sides have equal lengths.

F-5. (Grade 10.) Each unit square in a 5× 5 table is coloured either blue or yellow.
Prove that there exists a rectangle with sides parallel to the edges of the table, such that
the four unit squares in its corners have the same colour.
Solution 1: Each row contains at least 3 squares with the same colour. Similarly, the
dominating colour must be the same in at least 3 rows. W.l.o.g., suppose that the first 3
rows contain at least 3 blue squares each. If the first two rows contain two blue squares
in the same columns then the desired rectangle exists. Otherwise, each column contains
at least one blue square in these two rows (in Fig. 18, the blue squares are consecutive
w.l.o.g.). Thus in one of the first two rows there are two blue squares that are in the
same columns with the blue squares in the third row. These form the desired figure.
Solution 2: The first row containes three squares of the same colour, say, blue. If in
some of the remaining four rows there are two blue squares aligned to the blue squares
in the first row then the desired rectangle exists. Otherwise, each of these four rows
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contains two yellow squares aligned with the blue squares in the first row. But two
yellow squares can be placed into three columns in 3 different ways only. Thus there
exist two rows where these two yellow squares are in the same columns. These squares
form the desired figure.

F-6. (Grade 10.) Jüri draws a circle c with radius 3 and n circles with radius 1 on a
paper. Find the minimal n for which he can draw the circles in such a way that it would
not be possible to draw inside the circle with radius 3 any new circles with radius 1
having at most one common point with each of the previously drawn circles.
Answer: 3.
Solution: Let O be the center of circle c. Suppose that circles c1, c2, c3 with radius 1
and centers O1, O2, O3, respectively, are placed in such a way that they touch circle c
internally and O1, O2, O3 are vertices of an equilateral triangle (coloured dark in Fig. 19).
No new circle can be placed to the same line with two existing circles with radius 1
because the three circles would require free area with length 6 which is possible only
along the diameter of circle c. The other ways of placement are in the middle or to the
other side of the narrower area between two circles (uncoloured in Fig. 19).
The circle with radius 1 and center O touches all three circles, hence the location is
fixed. The circle with radius 1 and center O′1 being symmetric to point O w.r.t. line O2O3
touches circles c2 and c3 and has at least one common point also with circle c, as it is
in one line with the circle in the middle and circle c1. Hence this location is fixed, too.
Note that after moving the circle c2 towards point O the circle will intersect the circle
with center O′1 (since ∠OO2O′1 < 90◦) and also the circle in the middle. Thus if all circles
c1, c2, c3 are moved a bit towards point O, chances to add new circles disappear.
Consequently, if n ≥ 3 then Jüri can draw the circles in such a way that new circles
cannot be added in the required fashion. Show now that in the case n ≤ 2 a new
circle can always be added; it suffices to consider the case n = 2. Let c1 and c2 be
the given circles with radius 1 and centers O1 and O2. W.l.o.g., O1 6= O. Choose AB
as the diameter of c which is perpendicular to O1O (Fig. 20). Consider two circles with
radius 1, touching the circle c at points A and B, respectively. Circle c1 does not preclude
drawing either of them as it is located inside the strip with width 2 surrounding the line
O1O (dark in Fig. 20), where neither of the two circles outreach. Circle c2 can preclude
at most one of the two circles since it cannot outreach to both sides of the strip.

Figure 18

c

O
O1

O2

O3

O′

1

Figure 19

OO1

A

B

Figure 20
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F-7. (Grade 11.) Let a finite decimal fraction be given. Juku starts appending digits to
this fraction in such a way that each new digit equals the remainder of the sum of all
digits existing so far in division by 10. (For instance, if the initial fraction is 27.35 then
the digits added to the end are 7, 4, 8 etc.)
Prove that the infinite decimal fraction obtained this way represents a rational number.
Solution: It suffices to show that the infinite decimal fraction is periodic. For that, note
that each new digit except for the first digit is congruent to twice the previous digit
modulo 10. Indeed, let a1, . . . , ak−1, ak be the existing at some time moment digits where
ak is already added by Juku. Then the next digit ak+1 satisfies

ak+1 ≡ a1 + . . . + ak = (a1 + . . . + ak−1) + ak ≡ ak + ak = 2ak (mod 10) .

Hence each new digit is uniquely determined by the last existing digit. As there are only
a finite number of different digits, some digit must be added repeatedly. According to
the fact just proven, all following digits are repeated as well.
Remark: This solution can be reformulated without mentioning the fact that each new
digit except for the first is congruent to twice the previous one. After noting that Juku
must add some digit repeatedly, denote their position numbers in the decimal fraction
by m and n. Hence the digits before the mth digit and the digits before the nth digit sum
up to congruent numbers modulo 10. Adding the mth and the nth digit, respectively,
to the sums maintains the congruence. This means that the next digits are also equal.
Thus the digits start repeating periodically.

F-8. (Grade 11.) Let n > 1 be an integer and a1, a2, . . . , an some real numbers, the sum
of which is 0 and the sum of the absolute values of which is 1. Prove that

|a1 + 2a2 + . . . + nan| ≤
n− 1

2
.

Solution 1. According to the assumptions, for each k = 1, . . . , n− 1 it holds that

|a1 + . . . + ak| = |ak+1 + . . . + an| ,

|a1 + . . . + ak|+ |ak+1 + . . . + an| ≤ |a1|+ . . . + |ak|+ |ak+1|+ . . . + |an| = 1 .

Consequently, |ak+1 + . . . + an| ≤
1
2

for each k = 1, . . . , n− 1. Now

|a1 + 2a2 + . . . + nan|
= |(a1 + . . . + an) + (a2 + . . . + an) + . . . + (an−1 + an) + an|
≤ |a1 + . . . + an|+ |a2 + . . . + an|+ . . . + |an−1 + an|+ |an|
≤ 0 + 1

2 +
1
2 + . . . + 1

2 +
1
2 = n−1

2 .

Solution 2. Let A+ and A− be the sum of positive numbers and the sum of negative
numbers, respectively. By the assumptions, A+ + A− = 0 and A+ − A− = 1, implying

A+ =
1
2

and A− = −1
2

.
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By increasing the coefficients of positive terms and decreasing the coefficients of nega-
tive terms, the whole sum can only increase, and by decreasing the coefficients of posi-
tive terms and increasing that of negative terms, the sum can only decrease. Thus

a1 + 2a2 + . . . + nan ≤ n · A+ + 1 · A− = n−1
2 ,

a1 + 2a2 + . . . + nan ≥ 1 · A+ + n · A− = −n−1
2 .

Consequently, |a1 + 2a2 + . . . + nan| ≤
n− 1

2
.

Remark: The bound
n− 1

2
can be achieved for every n by taking a1 = −1

2
, a2 = . . . =

an−1 = 0 and an =
1
2

.

F-9. (Grade 11.) A convex quadrilateral ABCD where ∠DAB + ∠ABC < 180◦ is
given on a plane. Let E be a point different from the vertices of the quadrilateral on
the line interval AB such that the circumcircles of triangles AED and BEC intersect
inside the quadrilateral ABCD at point F. Point G is defined so that ∠DCG = ∠DAB,
∠CDG = ∠ABC and triangle CDG is located outside quadrilateral ABCD. Prove that
the points E, F, G are collinear.
Solution: Denote ∠DAB = α and ∠ABC = β (Fig. 21). From cyclic quadrilaterals AEFD
and BEFC one obtains

∠DFE = 180◦ −∠DAE = 180◦ − α ,
∠CFE = 180◦ −∠CBE = 180◦ − β ,

respectively. Thus ∠CFD = 360◦ − (180◦ − α) − (180◦ − β) = α + β. But ∠CGD =
180◦ − (α + β) by the choice of G. Hence the quadrilateral CFDG is cyclic. Conse-
quently, ∠DFG = ∠DCG = α = 180◦ − ∠DFE, which implies that the points E, F, G
are collinear.
Remark 1: The argumentation can also be turned around in the following way: Let G′ be
defined as the other intersection point of the circumcircle of triangle CFD and line EF
(Fig. 22). Then the quadrilateral CFDG′ is cyclic, whence

∠DCG′ = ∠DFG′ = 180◦ −∠DFE = α ,
∠CDG′ = ∠CFG′ = 180◦ −∠CFE = β .
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These equalities imply that G′ = G. Thus G belongs to line EF.
Remark 2: The claim of the problem holds also if point F does not have to be inside the
quadrilateral ABCD. Then G may also be located between E and F.

F-10. (Grade 11.) A (2k + 1) × (2k + 1) table, where k is a positive integer, contains
one real number in each entry, where these numbers are pairwise different. After each
row, one writes the median of the row, i.e., the number occurring in this row such that
the row contains the same amount of numbers less than it and greater than it. Let m be
the median of the column of medians. Prove that more than a quarter of the numbers
initially in the table are less than m.
Solution: Each row contains k numbers less than the median and k numbers greater than
the median. Thus k + 1 numbers in each row do not exceed the median of that row. In
rows whose median does not exceed m, these k + 1 numbers do not exceed m either.
There are k + 1 such rows. Consequently, there are at least (k + 1)2 numbers in the table
that do not exceed m. Only one of them is equal to m, whence (k + 1)2 − 1 = k2 + 2k
numbers are less than m. As k is positive by assumption, we have 1 < 4k and 4k + 1 <

4k + 4k = 8k. Now
k2 + 2k
(2k + 1)2 =

k2 + 2k
4k2 + 4k + 1

>
k2 + 2k

4k2 + 8k
=

1
4

and we are done.

F-11. (Grade 11.) For which natural numbers n ≥ 3 is it possible to cut a regular n-
gon into smaller pieces with regular polygonal shape? (The pieces may have different
number of sides.)
Answer: 3, 4, 6, 12.
Solution: A regular triangle can be partitioned into four regular triangles of equal size
(Fig. 23), a regular quadrilateral can be partitioned into four regular quadrilaterals with
equal size (Fig. 24) and a regular hexagon can be partitioned into six regular triangles
of equal size (Fig. 25). By building alternately equilateral triangles and squares onto the
sides of a regular 12-gon, just a regular hexagon remains (Fig. 26), whence also a regular
12-gon can be partitioned in the required way.
Show now that other regular polygons cannot be partitioned into smaller regular poly-
gons. For that, consider an arbitrary polygon that is partitioned into regular polygons.
As the size of an internal angle of a regular polygon is less than 180◦ and not less than
60◦, at most two regular polygons can meet at each vertex.
If a vertex of the big n-gon is filled by just one smaller polygon then this piece is an n-
gon itself. Beside it, there must be space for at least one regular polygon. No more than
two regular polygons can be placed there since the sum of the internal angles of these
polygons and the n-gon itself would exceed 180◦. Two new pieces can be placed only
if all these three pieces are triangular, which gives n = 3. It remains to study the case
where there is exactly one polygon beside the n-gonal piece. The size of the internal
angle of the n-gon being at most 120◦ implies n ≤ 6. The case n = 5 is impossible as its
external angles are of size 72◦ but no regular polygon has internal angles of size strictly
between 60◦ and 90◦.
If each vertex of the big n-gon is the meetpoint of two smaller regular polygons then one
of them must be a triangle since other regular polygons have internal angles of size 90◦

or more. Beside a triangle, there is space for a triangle, a quadrilateral or a pentagon.

18



Figure 23 Figure 24 Figure 25 Figure 26

60
◦

108
◦
108

◦

84
◦

Figure 27

In the first two cases, the size of the internal angles of the n-gon will be 120◦ and 150◦,
respectively, covering the cases n = 6 and n = 12. It remains to show that the third
case with a triangle and a pentagon meeting at each vertex is impossible. Indeed, the
side length of the pentagon must coincide with the side length of the initial big n-gon,
because it is impossible to place a regular polygon beside the pentagon along one side.
For the same reason, another pentagon must be built to the second next side along the
boundary of the initial polygon. These two pentagons meet at the third vertex of the
triangle built to the side between (Fig. 27). But the ulterior angle between the sides of
the pentagons at the meeting point has size 360◦ − 2 · 108◦ − 60◦ = 84◦, which cannot
be filled with interior angles of regular polygons.

F-12. (Grade 12.) Find the smallest natural number n for which there exist integers
a1, . . . , an (that do not have to be different) such that a4

1 + . . . + a4
n = 2013.

Answer: 14.
Solution: Note that the fourth powers of even numbers are divisible by 16 and the fourth
powers of odd numbers are congruent to 1 modulo 16. As 2013 ≡ 13 (mod 16), the
desired representation must contain at least 13 odd summands.

Suppose that no more summands are needed. As 74 = 2401 > 2013, each summand
must be 14 = 1, 34 = 81 or 54 = 625. There can be at most 3 summands 625 since
4 · 625 > 2013. Therefore the number of summands not divisible by 5 is at least 10.
The fourth power of an integer not divisible by 5 is congruent to 1 modulo 5, whereas
2013 ≡ 3 (mod 5). Hence the number of summands not divisible by 5 must be at least
13. This shows that the representation contains only summands 1 and 81, but 13 such
numbers sum up to at most 13 · 81 which is less than 2013. Thus representations with
13 summands are impossible.

On the other hand, 14 fourth powers is enough as 64 + 54 + 34 + 11 · 14 = 2013.
Remark: The fact that 2013 cannot be represented as the sum of 13 odd fourth powers
can also be proved without calculations modulo 5. Suppose that

a4
1 + . . . + a4

13 = 2013 , (5)
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where ai = 2bi + 1 for every i = 1, . . . , 13. We may assume that each bi is 0, 1 or 2. As

(2x + 1)4 = 16x4 + 32x3 + 24x2 + 8x + 1 = 16
(

x4 + 2x3 +
3
2

x2 +
1
2

x
)
+ 1

and

x4 + 2x3 +
3
2

x2 +
1
2

x = x4 + 2x3 + x2 +
1
2

x2 +
1
2

x = x2(x + 1)2 +
1
2

x(x + 1) ,

the equality (5) reduces to f (b1) + f (b2) + . . . + f (b13) =
2013− 1− 1− . . .− 1

16
= 125

where f (x) = x2(x + 1)2 +
1
2

x(x + 1). Thus 125 should be representable as the sum of
13 integers, each of which is f (0) = 0, f (1) = 5 or f (2) = 39. Obviously the number of
summands 39 is at most 3 and, as 125− 13 · 5 = 60, at least 2. The cases with two and
three summands 39 give no solution.

F-13. (Grade 12.) Real numbers x1, x2, x3, x4 in [0; 1] are such that the product

K = |x1 − x2| · |x1 − x3| · |x1 − x4| · |x2 − x3| · |x2 − x4| · |x3 − x4|

is as large as possible. Prove that
1

27
> K >

4
243

.

Solution 1: If some two numbers among x1, x2, x3, x4 are equal then K = 0 which is not
maximal. Thus assume w.l.o.g. that x1 > x2 > x3 > x4. Applying AM-GM for x1 − x2,
x2 − x3 and x3 − x4 gives

3
√
(x1 − x2)(x2 − x3)(x3 − x4) ≤

(x1−x2) + (x2−x3) + (x3−x4)

3
=

x1 − x4
3

≤ 1
3

,

i.e., |x1− x2| · |x2− x3| · |x3− x4| ≤
1

27
. Among the remaining factors |x1− x3|, |x1− x4|,

|x2− x4|, at least one is less than 1. Hence we conclude the left-hand inequality needed.

For the second inequality, note that if x1 = 1, x2 =
3
4

, x3 =
1
4

, x4 = 0 then

K =
1
4
· 3

4
· 1 · 1

2
· 3

4
· 1

4
=

9
512

>
4

243
,

since 9 · 243 = 2187 > 2048 = 4 · 512.
Solution 2: W.l.o.g., assume the inequalities x1 > x2 > x3 > x4. In addition, assume that
x1 = 1 and x4 = 0 as otherwise K can be made larger. Substituting x2 = y and x3 = z
for simplicity, one obtains

K = (1− y)(1− z)(y− z)yz = (y− z) · (1− y)z · (1− z)y .

Consider pairs (y, z) with y − z fixed. The sums (1 − y) + z = 1 − (y − z) and (1 −
z) + y = 1 + (y− z) are then also fixed. The product of two numbers with fixed sum
is the largest if the numbers are equal; thus the product (1− y)z is the largest in the
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case y + z = 1 and the product (1 − z)y is the largest in the same case y + z = 1.
Consequently, also K obtains its largest value in the case y + z = 1. Substituting 1− z at
place of y, one gets K = z2(1− z)2(1− 2z) = (z(1− z))2 (1− 2z).

Let f (z) = (z(1− z))2 (1− 2z), then f ′(z) = 2z(1− z)(1− 5z + 5z2). The roots of f ′

within (0, 1) are the roots of the quadratic polynomial 5z2 − 5z + 1, namely
5−
√

5
10

and
5 +
√

5
10

= 1− 5−
√

5
10

. As f (0) = f
(

1
2

)
= 0 and f (z) > 0 whenever 0 < z <

1
2

, the maximum of f is achieved at z =
5−
√

5
10

. Thus the maximum value of K is

f

(
5−
√

5
10

)
=

√
5

125
. This number

√
5

125
satisfies both inequalities of the problem.

F-14. (Grade 12.) The midpoints of sides C2C3, C3C1 and C1C2 of a triangle C1C2C3
are K1, K2 and K3, respectively. The centers of circles c1, c2 and c3 are C1, C2 and C3,
respectively, and the centers of circles k1, k2, k3 are K1, K2, K3, respectively. No two of
the given six circles intersect in two points nor are they inside each other. Circles k1, k2
and k3 touch each other externally.

(i) Prove that the sum of the radii of circles c1, c2 and c3 does not exceed one quarter
of the perimeter of the triangle C1C2C3.

(ii) Prove that if the sum of the radii of circles c1, c2 and c3 equals one quarter of the
perimeter of the triangle C1C2C3 then the triangle C1C2C3 is equilateral.

Solution: Let the radii of the circles c1, c2, c3 be r1, r2, r3, and the radii of the circles k1, k2,
k3 be R1, R2, R3, respectively (Fig. 28). By assumptions,

R1 + R2 = |K1K2| = 1
2 |C1C2| ,

R2 + R3 = |K2K3| = 1
2 |C2C3| ,

R3 + R1 = |K3K1| = 1
2 |C3C1| ,

which sum up to 2R1 + 2R2 + 2R3 =
1
2
(|C1C2|+ |C2C3|+ |C3C1|). The assumptions

also imply inequalities

r1 + R3 ≤ 1
2 |C1C2| ,

r2 + R1 ≤ 1
2 |C2C3| ,

r3 + R2 ≤ 1
2 |C3C1| ,

R3 + r2 ≤ 1
2 |C1C2| ,

R1 + r3 ≤ 1
2 |C2C3| ,

R2 + r1 ≤ 1
2 |C3C1| ,

which sum up to 2r1 + 2r2 + 2r3 + 2R1 + 2R2 + 2R3 ≤ |C1C2|+ |C2C3|+ |C3C1|.

(i) Altogether, we obtain the inequality 2r1 + 2r2 + 2r3 ≤
1
2
(|C1C2|+ |C2C3|+ |C3C1|),

which implies r1 + r2 + r3 ≤
1
4
(|C1C2|+ |C2C3|+ |C3C1|) as desired.
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(ii) Suppose that r1 + r2 + r3 =
1
4
(|C1C2|+ |C2C3|+ |C3C1|). Then all inequalities

above must hold as equalities. The equalities r1 + R3 =
1
2
|C1C2| = r2 + R3 im-

ply r1 = r2, analogously r1 = r3. Denoting r = r1 = r2 = r3, we get

r + R3 = 1
2 |C1C2| = R1 + R2 ,

r + R2 = 1
2 |C1C3| = R1 + R3 ,

where summing side-by-side gives 2r + R2 + R3 = 2R1 + R2 + R3, i.e., R1 = r.
Analogously, R2 = R3 = r. Thus all sides of the triangle C1C2C3 have length 4r.

F-15. (Grade 12.) Define magic square as a 3 × 3 table where each cell contains one
number from 1 to 9 so that all these numbers are used and all row sums and column
sums are equal. Prove that any two magic squares can be obtained from each other via
the following transformations: interchanging two rows, interchanging two columns,
rotating the square, reflecting the square w.r.t. its diagonal.
Solution: As all the transformations are invertible, it suffices to show that every magic
square can be turned to one particular magic square by these transformations.
The sum of all numbers in a magic square is 45, whence the numbers in each row and
each column must sum up to 15. As this is odd, exactly 0 or 2 of the three summands
must be even. There are 4 even numbers in use, hence 2 even numbers must be in some
two rows and 0 even number in the remaining one. The same holds for columns.
Hence the even numbers 2, 4, 6, 8 occur in the corners of some rectangle with sides
parallel to the edges of the table. By interchanging rows or columns one can move the
even numbers to the corners of the whole table. There are 3 possibilities to locate these
four numbers into the corners, that can not be obtained from each other by rotations and
reflections of the table (Fig. 29). The last two of them cannot occur in the magic square
because the missing numbers in the first and third column would coincide. Hence only
the first possibility remains. Its completion to a magic square is unique (Fig. 30).
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IMO Team Selection Contest

First day

S-1. Find all prime numbers p for which one can find a positive integer m and non-
negative integers a0, a1, . . . , am less than p such that{

a0 + a1p + . . . + am−1pm−1 + am pm = 2013,
a0 + a1 + . . . + am−1 + am = 11.

Answer: 2003.
Solution: Subtracting the second equation from the first one gives

a1(p− 1) + . . . + am (pm − 1) = 2002.

As the l.h.s. of the obtained equality is divisible by p − 1, 2002 = 2 · 7 · 11 · 13 must
also be divisible by p− 1. Thus p− 1 equals one of 1, 2, 7, 11, 13, 14, 22, 26, 77, 91, 143,
154, 182, 286, 1001 and 2002. Since p is prime, only 2, 3, 23 and 2003 remain. The first
equation of the given system is the p-ary representation of 2013, whence the coefficients
ai are uniquely determined by p.
Now we study all cases.

1. If p = 2 then m = 10 as 210 < 2013 < 211. The second equation implies that all
ais must be ones, but 1 + 2 + 22 + . . . + 210 = 211 − 1 = 2047. Hence there is no
solution in this case.

2. Let p = 3. As 2013 = 2 · 3 + 32 + 2 · 33 + 2 · 35 + 2 · 36 whereas 2 + 1 + 2 + 2 + 2 =
9 6= 11, this case gives no solution either.

3. Let p = 23. As 2013 = 12 + 18 · 23 + 3 · 232 while 12 + 18 + 3 > 11, this case gives
no solution either.

4. For p = 2003, we get 2013 = 10 + 2003 and 10 + 1 = 11, so the conditions are
satisfied.

Consequently, 2003 is the only prime number with the desired property.

S-2. For which positive integers n ≥ 3 is it possible to mark n points of a plane
in such a way that, starting from one marked point and moving on each step to the
marked point which is the second closest to the current point, one can walk through
all the marked points and return to the initial one? For each point, the second closest
marked point must be uniquely determined.

Answer: for all n ≥ 4.

Solution: To find a construction for any n ≥ 4, choose ε <
2π

n3 . Place the points A1, A2,
. . . , An−1 on a circle in such a way that the angle between the radii drawn to the points
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Ai and Ai+1 for i = 1, . . . , n − 2 is equal to αi =
2π

n− 2
− (n − 2− i)ε (see Fig. 31 for

n = 6). The angle between the radii drawn to the points An−1 and A1 is then equal to

αn−1 =
(n− 2)(n− 3)

2
ε. Place the point An outside of the circle on the extension of the

radius containing An−1 at the same distance d from An−1 as the distance between points
A1 and A2. It is straightforward to verify that the points A1, . . . , An satisfy the condition
of the problem.
On the other hand, suppose that there exists a construction for n = 3. Let the cyclic
walk be A1 → A2 → A3 → A1. Then d(A1, A2) > d(A1, A3), d(A2, A3) > d(A2, A1)
and d(A3, A1) > d(A3, A2), where d(X, Y) denotes the distance between X and Y. But
these three inequalities cannot hold simultaneously.

S-3. Let x1, . . . , xn be non-negative real numbers, not all of which are zeros.

(i) Prove that

1 ≤

(
x1 +

x2
2
+

x3
3
+ . . . +

xn
n

)
· (x1 + 2x2 + 3x3 + . . . + nxn)

(x1 + x2 + x3 + . . . + xn)
2 ≤ (n + 1)2

4n
.

(ii) Show that, for each n ≥ 1, both inequalities can hold as equalities.

Solution: Applying AM-GM gives(
n

∑
k=1

xk
k

)(
n

∑
k=1

kxk

)
=

1
n
·
(

n

∑
k=1

nxk
k

)(
n

∑
k=1

kxk

)
≤

≤ 1
n
· 1

4

(
n

∑
k=1

nxk
k

+
n

∑
k=1

kxk

)2

=

=
1

4n

(
n

∑
k=1

xk

(n
k
+ k
))2

≤ (n + 1)2

4n

(
n

∑
k=1

xk

)2

.

(The last inequality is proved by
n
k
+ k ≤ n + 1, as it is equivalent to (n− k)(k− 1) ≥ 0.)

This gives us the necessary upper bound; this bound is achieved for instance if x1 =
xn = 1 and x2 = . . . = xn−1 = 0.
For the lower bound, estimate the numerator by Cauchy-Schwarz inequality:(

n

∑
k=1

xk
k

)(
n

∑
k=1

kxk

)
≥
(

n

∑
k=1

√
xk
k
·
√

kxk

)2

=

(
n

∑
k=1

xk

)2

;

the equality holds here if exactly one of xis is non-zero.
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Second day

S-4. Let D be the point different from B on the hypotenuse AB of a right triangle ABC
such that |CB| = |CD|. Let O be the circumcenter of triangle ACD. Rays OD and CB
intersect at point P, and the line through point O perpendicular to side AB and ray CD
intersect at point Q. Points A, C, P, Q are concyclic. Does this imply that ACPQ is a
square?

Solution: As OQ is the perpendicular bisector of AD, one has ∠QAD = ∠ADQ =
∠BDC = ∠CBD (Fig. 32). Therefore AQ ‖ BC, whence ∠QAC = 180◦ −∠ACB = 90◦.
From the cyclic quadrilateral APCQ one also gets ∠CPQ = ∠PQA = 90◦, i.e., ACPQ is
a rectangle.
As ∠DOC = 2∠DAC, one obtains

∠DOC = 2∠BAC = 2(90◦ −∠CBA) = 180◦ − 2∠CBA =

= 180◦ −∠CBD−∠BDC = ∠DCB ,

which implies that isosceles triangles BDC and DCO are similar. Thus ∠BDC = ∠DCO,
i.e., OC ‖ AB, whence ∠QOC = 90◦ = ∠QAC. So O lies on the circle determined by A,
C, P, Q. Therefore

∠ACQ = ∠AOQ =
1
2
∠AOD =

1
2
∠AOP =

1
2
∠ACP.

Consequently, the diagonal of the rectangle ACPQ bisects the angle of the rectangle,
whence ACPQ is a square.
Remark: It turns out from the solution that the conditions of the problem determine the

shape of the triangle ABC, namely ∠ABC =
3
8

π.
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S-5. Call a tuple (bm, bm+1, . . . , bn) of integers perfect if both following conditions are
fulfilled:

1. There exists an integer a > 1 such that bk = ak + 1 for all k = m, m + 1, . . . , n;

2. For all k = m, m+ 1, . . . , n, there exists a prime number q and a non-negative integer
t such that bk = qt.

Prove that if n− m is large enough then there is no perfect tuples, and find all perfect
tuples with the maximal number of components.

Answer:
(

20 + 1, 21 + 1, 22 + 1, 23 + 1, 24 + 1
)

.

Solution: Clearly (20 + 1, 21 + 1, 22 + 1, 23 + 1, 24 + 1) is a perfect tuple with length 5.
Show in the rest that there are no other perfect tuples with length 5 or larger.

For that, let (am + 1, am+1 + 1, . . . , an + 1) be an arbitrary perfect tuple with length at
least 5. There must exist at least two odd exponents among m, m + 1, . . . , n; let k and
k + 2 be the two largest odd exponents. As ak + 1 and ak+2 + 1 are prime powers while
having a common divisor a + 1, these two integers must be powers of the same prime
q. Thus the larger of them, ak+2 + 1, is divisible by the smaller one, ak + 1, which shows
that ak + 1 divides also the difference a2 · (ak + 1)− (ak+2 + 1) = a2− 1. Hence ak + 1 ≤
a2− 1, implying k < 2. So k = 1 as k is odd. By choice of k, the only odd exponents in our
perfect tuple are 1 and 3 and the tuple is of the form (a0 + 1, a1 + 1, a2 + 1, a3 + 1, a4 + 1).

As a + 1 and a3 + 1 are powers of the same prime number q, also the ratio
a3 + 1
a + 1

=

a2 − a + 1 is a power of q. Note that a2 − a + 1 ≥ 2a− a + 1 = a + 1 by a ≥ 2, hence
a2 − a + 1 is divisible by a + 1. Thus the difference (a2 − a + 1)− (a + 1)(a− 2) = 3 is
divisible by a + 1. This filters out the only possibility a = 2.

S-6. A class consists of 7 boys and 13 girls. During the first three months of the school
year, each boy has communicated with each girl at least once. Prove that there exist two
boys and two girls such that both boys communicated with both girls first time in the
same month.

Solution 1: Call the first communication between a boy and a girl their acquaintance.
During the 3 months, there are 7 · 13 = 91 acquaintances in total. Thus there exists a
month when there was at least 31 aquaintances. Let the boys be denoted by p1 through
p7 and let Ti, i = 1, . . . , 7, be the set of girls to whom pi acquainted in this month. We
have to show that there exist distinct i and j such that Ti ∩ Tj contains at least 2 girls.
W.l.o.g., assume the inequalities |T1| ≥ |T2| ≥ . . . ≥ |T7|. Consider two cases.

1. The case |T1| + |T2| + |T3| + |T4| ≥ 20. Suppose that all intersections T1 ∩ T2, T1 ∩
T3, . . . , T3 ∩ T4 contain at most one girl. Let k ≤ 6 be the number of non-empty
intersections. Then the first four boys acquainted with

|T1 ∪ T2 ∪ T3 ∪ T4| ≥ |T1|+ |T2|+ |T3|+ |T4| − k ≥ 20− 6 = 14
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girls in the month under consideration. (For proving the first inequality, note that
girls that belong to one or two subsets count once in the r.h.s., girls belonging to
three subsets not count and girls in all four subsets count −2 times.)

This is a contradiction since there are only 13 girls.

2. The case |T1|+ |T2|+ |T3|+ |T4| ≤ 19. As |T5|+ |T6|+ |T7| ≥ 12, we have |T5| ≥ 4.
Now |T4| ≤ 4 implies |T4| = |T5| = 4 and hence also |T6| = |T7| = 4. Now
|T1|+ |T2|+ |T3| = 15 in order to get 31 in total.

Suppose that all intersections Ti ∩ Tj, i, j = 1, . . . , 7, contain at most one girl. If boys
p1, p2 and p3 altogether acquainted with all girls in this month then at least one
intersection Ti ∩ T4, i = 1, 2, 3, contains at least two girls. Otherwise, |T1| + |T2 \
T1|+ |T3 \ (T1 ∪ T2)| = 15− 1− 2 = 12 (Fig. 33 shows all possibilities), since only
then there is a girl, say t13, with whom none of p1, p2, p3 acquainted. Clearly all boys
p4, p5, p6, p7 must have acquainted with her, and each of them also acquainted with
one girl from sets T1, T2 \ T1 and T3 \ (T1 ∪ T2). As the last set contains at most three
elements, two of the four boys acquainted with the same girl from T3 \ (T1 ∪ T2).

Solution 2: Let A be the set of all combinations of two boys, |A| =
(

7
2

)
= 21. Say

that girl t determines an element {p1, p2} of A if t acquainted with p1 and p2 in the same
month. If in the ith month a girl t acquainted with exactly ni boys, where i = 1, 2, 3, then

t determines
(

n1
2

)
+

(
n2
2

)
+

(
n3
2

)
elements of A. Applying Jensen’s inequality for

f (x) =
x(x− 1)

2
gives

(
n1
2

)
+

(
n2
2

)
+

(
n3
2

)
≥ 3 · f

(
n1 + n2 + n3

3

)
= 3 · f

(
7
3

)
= 4

2
3

.

As
(

n1
2

)
+

(
n2
2

)
+

(
n3
2

)
is an integer,

(
n1
2

)
+

(
n2
2

)
+

(
n3
2

)
≥ 5. Hence all girls

determine at least 13 · 5 = 65 elements of A in total.
As 65 ≥ 3 · 21 + 1, an element {p∗1 , p∗2} of A is determined by at least 4 girls by the
pigeonhole principle. Consequently there exists a month in which this couple of boys is
determined by at least two girls.
Solution 3: Suppose that there is no required pairs of boys and girls. Like in Solution
1, consider a month with 31 or more acquaintances. Let gi be the number of girls who
acquainted with exactly i boys in this month, i = 0, 1, . . . , 7. We get a system of inequal-
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ities 
g2 + 3g3 + 6g4 + 10g5 + 15g6 + 21g7 ≤ 21,

g1 + g2 + g3 + g4 + g5 + g6 + g7 ≤ 13,
g1 + 2g2 + 3g3 + 4g4 + 5g5 + 6g6 + 7g7 ≥ 31.

(6)

If at least one girl aquainted with 5 or more boys then g5 + g6 + g7 ≥ 1. The system (6)
then reduces to

g2 + 3g3 + 6g4 + 10(g5 + g6 + g7 − 1) ≤ 11,
g1 + g2 + g3 + g4 + (g5 + g6 + g7 − 1) ≤ 12,

g1 + 2g2 + 3g3 + 4g4 + 7(g5 + g6 + g7 − 1) ≥ 24.

Summing the first two inequalities gives

g1 + 2g2 + 4g3 + 7g4 + 11(g5 + g6 + g7 − 1) ≤ 23,

which contradicts the third inequality.
Thus g5 = g6 = g7 = 0 and the system of inequalities reduces to

g2 + 3g3 + 6g4 ≤ 21,
g1 + g2 + g3 + g4 ≤ 13,

g1 + 2g2 + 3g3 + 4g4 ≥ 31.
(7)

Suppose that g4 ≥ 1. As in the previous case, (7) implies
g2 + 3g3 + 6(g4 − 1) ≤ 15,

g1 + g2 + g3 + (g4 − 1) ≤ 12,
g1 + 2g2 + 3g3 + 4(g4 − 1) ≥ 27.

The first two inequalities sum up to g1 + 2g2 + 4g3 + 7(g4 − 1) ≤ 27. In the light of the
third inequality, this is possible only if g3 = 0 and g4 = 1. Then the second and third
inequalities give g1 + g2 ≤ 12 and g1 + 2g2 ≥ 27, which contradict each other since
g1 + 2g2 ≤ 2(g1 + g2).
Hence also g4 = 0 and our system of inequalities reduces to

g2 + 3g3 ≤ 21,
g1 + g2 + g3 ≤ 13,

g1 + 2g2 + 3g3 ≥ 31.

Subtracting the first inequality from the third one, we obtain g1 + g2 ≥ 10. Subtracting
twice the second inequality from the third one, we get g3− g1 ≥ 5. The two inequalities
obtained sum up to g2 + g3 ≥ 15, contradicting the second inequality.
Remark 1: After decreasing either the number of boys or the number of girls, the claim
of the problem would not hold anymore.
Remark 2: This problem is a variant of the problem F-5 from the Final Round for the 10th
grade. In terms of that problem, here we take 7× 13 table instead of 5× 5 and use three
colours instead of two.
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