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Mathematics Contests in Estonia

The Estonian Mathematical Olympiad is held annually in three rounds: at
the school, town/regional and national levels. The best students of each
round (except the final) are invited to participate in the next round. Every
year, about 110 students altogether reach the final round.

In each round of the Olympiad, separate problem sets are given to the
students of each grade. Students of grade 9 to 12 compete in all rounds,
students of grade 7 to 8 participate at school and regional levels only. Some
towns, regions and schools also organize olympiads for even younger stu-
dents. The school round usually takes place in December, the regional
round in January or February and the final round in March or April in
Tartu. The problems for every grade are usually in compliance with the
school curriculum of that grade but, in the final round, also problems re-
quiring additional knowledge may be given.

The first problem solving contest in Estonia took place in 1950. The next
one, which was held in 1954, is considered as the first Estonian Mathemati-
cal Olympiad.

Apart from the Olympiad, open contests are held twice a year, usu-
ally in September and in December. In these contests, anybody who has
never been enrolled in a university or other higher education institution is
allowed to participate. The contestants compete in two separate categories:
Juniors and Seniors. In the first category, students up to the 10th grade can
participate; the other category has no restriction. Being successful in the
open contests generally assumes knowledge outside the school curriculum.

Based on the results of all competitions during the year, about 20 IMO
team candidates are selected. IMO team selection contest for them is held
in April or May; in recent years experimentally in two rounds. Each round
is an IMO-style two-day competition with 4.5 hours to solve 3 problems
on both days. Some problems in our selection contest are at the level of
difficulty of the IMO but easier problems are usually also included.

The problems of previous competitions can be downloaded at the Esto-
nian Mathematical Olympiads website.

Besides the above-mentioned contests and the quiz “Kangaroo” some
other regional and international competitions and matches between schools
are held.

*
This booklet presents the problems of the open contests, the final round

of national olympiad and the team selection contest. For the open contests
and the final round, selection has been made to include only problems that
have not been taken from other competitions or problem sources and seem
to be interesting enough. The team selection contest is presented entirely.
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Selected Problems from Open Contests

O1. (Juniors.) A positive integer n is interesting, if for some positive integer
m and positive integers a, b that are smaller than m, m2

ab = n. For example,
10 is interesting because 202

4·10 = 10. Find the smallest interesting integer.
Answer: 2.
Solution. For n = 2 we can take m = 12, a = 8 and b = 9, because

122

8·9 = 144
72 = 2. On the other hand, 1 is not interesting, because if m2

ab = 1, or
m2 = ab, then a and b cannot both be less than m at the same time.

Remark. Every number greater than 1 is interesting. The construction in
the solution for n = 2 generalizes to any n > 1, if we define m = n2(n + 1),
a = n3 and b = (n + 1)2.

O2. (Juniors.) Is there a two-digit number n that does not end with zero
such that

a) all numbers that can be formed by adding one or more zeros between
the two-digit number’s digits are its multiples?

b) none of the numbers that can be formed by adding one or more zeros
between the two-digit number’s digits are its multiples?

c) some numbers that can be formed by adding one or more zeros be-
tween the two-digit number’s digits are its multiples and some are
not?

Answer: a) yes, b) yes, c) yes.
Solution. a) One such number is n = 15. All numbers formed by adding

zeros between its digits are divisible by 3 and 5.
b) One such number is n = 12. Adding zeros between the digits, the last

two digits will always be 02. Hence no such number will be divisible by 4.
c) One such number is n = 11, because 101 is not divisible by 11 but

1001 is.

O3. (Juniors.) A right triangle ABC has the right angle at vertex A. Circle
c passes through vertices A and B of the triangle ABC and intersects the
sides AC and BC correspondingly at points D and E. The line segment CD
has the same length as the diameter of the circle c. Prove that the triangle
ABE is isosceles.

Solution 1. Since ∠BAD = 90◦ (Fig. 1), BD is the diameter of circle c and
therefore CD = BD. Since BD is diameter, also ∠BED = 90◦, so DE is an
altitude of the isosceles triangle BDC, bisecting its base BC. Hence E is the
midpoint of the hypotenuse BC of the triangle ABC. Since the midpoint of
the hypotenuse is the circumcentre of a right triangle, it follows EA = EB.
This means that ABE is an isosceles triangle.
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Fig. 1

Solution 2. As in the previous solution,
we show that CD = BD. Hence ∠ECD =
∠EBD. From the equality of the inscribed
angles subtending the arc ED it also follows
∠EBD = ∠EAD. From the triangle ABC
we get ∠ABC = 90◦ − ∠BCA, or ∠EBA =
90◦ − ∠ECD. On the other hand, ∠EAB =
∠DAB − ∠EAD = 90◦ − ∠EBD = 90◦ −
∠ECD. Consequently ∠EBA = ∠EAB. So
the triangle ABC is isosceles.

O4. (Juniors.) Let d be a positive number. On the parabola, whose equation
has the coefficient 1 at the quadratic term, points A, B and C are chosen in
such a way that the difference of the x-coordinates of points A and B is d
and the difference of the x-coordinates of points B and C is also d. Find the
area of the triangle ABC.

Answer: d3.

x

y

y = x2

A
B

C

A′B′C′

Fig. 2

Solution 1. Without loss of generality as-
sume that equation of the parabola is y = x2

(Fig. 2). Let the abcissas of the points A, B,
and C be a, b, and c. Let A′, B′, and C′ be the
projections of A, B and C onto the x-axis. De-
noting the area of a region K by SK we have
SABC = SACC′A′ − SABB′A′ − SBCC′B′ . Since
SACC′A′ = 2d · a2+c2

2 , SABB′A′ = d · a2+b2

2 ,
SBCC′B′ = d · b2+c2

2 , it follows that SABC =
1
2 d(2a2 + 2c2 − a2 − b2 − b2 − c2) = 1

2 d(a2 − b2 − b2 + c2) = 1
2 d
(
d(a + b)−

d(b + c)
)
= 1

2 d2(a− c) = 1
2 d2 · 2d = d3.

Solution 2. Without loss of generality we can assume that point B lies
at the origin. Then the equation of the parabola is y = x2 + px with some
p. The coordinates of A and C are then (d, d2 + pd) and (−d, d2 − pd). Let
D be the midpoint of the segment AC. Its coordinates are (0, d2), so BD
is perpendicular to the x-axis, hence the lengths of the altitudes of both
triangles ABD and BCD with the base BD are d. So both the triangles have
area d3

2 , hence the area of the triangle ABC is d3.

O5. (Juniors.) On the plane three different points P, Q, and R are chosen. It
is known that however one chooses another point X on the plane, the point
P is always either closer to X than the point Q or closer to X than the point
R. Prove that the point P lies on the line segment QR.

Solution. We show that if the point P lies outside the segment QR, then
the conditions of the problem are not satisfied.

If P lies on the line QR but outside the segment QR (Fig. 3), then we can
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take the point X on the line QR on the other side of the segment QR. Then
the points Q and R are closer to the point X than the point P.

If P lies outside the line QR (Fig. 4), then the perpendicular bisectors
of the segments PQ and PR intersect. Choose the points X in the region,
which lies towards Q from the perpendicular bisector of PQ and towards R
from the perpendicular bisector of PR (the dark region on the figure). Then
the points Q and R are closer to the point X than the point P.

O6. (Seniors.) a) Find the largest number that is the greatest common di-
visor of some four different two-digit numbers. b) Find the largest number
that is the least common multiple of some four different two-digit numbers.

Answer: a) 24; b) 99 · 98 · 97 · 95.
Solution. a) Let d be the greatest common divisor of some four different

two-digit numbers. Since all these numbers are divisible by d, the least
possible candidates of these four numbers are d, 2d, 3d, 4d. Hence 4d < 100,
thus d 6 24. On the other hand, the greatest common divisor of 24, 48, 72
and 96 is 24.

b) The numbers 99, 98, 97, and 95 are pairwise relatively prime, hence
lcm(99, 98, 97, 95) = 99 · 98 · 97 · 95. To show that this is the largest possible,
consider four different two-digit numbers a1, a2, a3, a4; assume without loss
of generality that a1 > a2 > a3 > a4. If a4 6 95, then lcm(a1, a2, a3, a4) 6
a1a2a3a4 6 99 · 98 · 97 · 95. If a4 = 96, then the four numbers can only be 99,
98, 97, 96, but lcm(99, 98, 97, 96) = 99·98·97·96

2·3 < 99 · 98 · 97 · 95.

O7. (Seniors.) Angles α and β are such that tan α
tan β = k 6= 1. Express sin(α+β)

sin(α−β)

in terms of k.
Answer: k+1

k−1 .
Solution. We have k = tan α

tan β = sin α·cos β
cos α·sin β , or sin α cos β = k · cos α sin β.

Therefore
sin(α + β)

sin(α− β)
=

sin α cos β + cos α sin β

sin α cos β− cos α sin β
=

(k + 1) · cos α sin β

(k− 1) · cos α sin β
=

k + 1
k− 1

.

O8. (Seniors.) Let n be a natural number such that n + 1, n + 3, n + 7 and
n + 9 are prime numbers, and n + 31, n + 33, n + 37 and n + 39 are also
prime numbers. Find the remainder of n divided by 210.

6



Answer: 190.
Solution. Consider the remainders of n when divided by 2, 3, 5, and 7.

In the following tables the left column shows the remainder and the right
column shows, which of the given eight numbers cannot be prime, if n > 7:

n mod 2 divisible by 2
1 n + 1

n mod 3 divisible by 3
0 n + 3
2 n + 1

n mod 5 divisible by 5
1 n + 9
2 n + 3
3 n + 7
4 n + 1

n mod 7 divisible by 7
0 n + 7
2 n + 33
3 n + 39
4 n + 3
5 n + 9
6 n + 1

Thus if n > 7 then the remainder of n when divided by 2 and 5 is 0 and
when divided by 3 and 7 is 1; hence n − 1 is a multiple of 3 and 7. Con-
sequently n is a multiple of 10 and n − 1 is a multiple of 21. This implies
that n + 20 is a multiple of 21 and a multiple of 10, hence a multiple of 210.
Consequently the remainder of n when divided by 210 is 190. The numbers
n = 1, 2, 3, 4, 5, 6 do not satisfy the conditions of the problem.

Remark. The smallest numbers satisfying the conditions of the problem
are n = 1006300, 2594950, 3919210, 9600550, . . .

O9. (Seniors.) Find all real-valued functions f defined on real numbers
which satisfy f ( f (x) + f (y)) = f (x) + y for all real x, y.

Answer: f (x) = x.
Solution 1. Let z1, z2 be real numbers for which f (z1) = f (z2). Substi-

tuting y = z1 and y = z2 into the given equation we get f ( f (x) + f (z1)) =
f (x) + z1, and f ( f (x) + f (z2)) = f (x) + z2. Since the left hand sides are
equal, we have f (x) + z1 = f (x) + z2, whence z1 = z2. Hence f is one-to-
one. Substituting y = 0 into the given equation we get f ( f (x) + f (0)) =
f (x) for any real x. Since f is one-to-one, we have f (x) + f (0) = x. If
x = 0, then the last equation gives 2 f (0) = 0, or f (0) = 0. So this equation
simplifies to f (x) = x. The function f (x) = x satisfies the original equation.

Solution 2. Interchanging x and y in the given equation we get f ( f (y) +
f (x)) = f (y) + x. Since the left hand side is the same as in the original
equation, we have f (x) + y = f (y) + x. Substituting y = 0 into this we
get f (x) = x + f (0). Substituting into the original equation all applications
of f according to the last equality, we get x + f (0) + y + f (0) + f (0) =
x+ f (0)+ y. This gives f (0) = 0 and from f (x) = x+ f (0) we get f (x) = x.

O10. (Seniors.) The bisector of the angle A of the triangle ABC intersects
the side BC at D. A circle c through the vertex A touches the side BC at D.
Prove that the circumcircle of the triangle ABC touches the circle c at A.
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Solution 1. Let the centres of the cir-
cumcircle ABC and the circle c be respec-
tively O and P (Fig. 5). Denote ∠CAB =
α, ∠ABC = β and ∠BCA = γ. Then
the bisector of angle A creates the angles
∠ADB = 180◦ − β − α

2 and ∠ADC =
180◦ − γ− α

2 at point D. Without loss of
generality, we can assume γ > β (other-
wise exchange the roles of points B and
C). Due to this assumption, ∠ADB >
∠ADC, so ∠ADB > 90◦. Since ∠PDB =
90◦ and PA = PD, we have ∠DAP = ∠ADP = ∠ADB − ∠PDB =
∠ADB − 90◦ = 90◦ − β − α

2 , from which ∠CAP = ∠CAD + ∠DAP =
90◦ − β. On the other hand, from the same assumption we get β < 90◦, and
hence ∠AOC = 2∠ABC = 2β, from which ∠CAO = 180◦−∠AOC

2 = 90◦ − β.
It follows that ∠CAP = ∠CAO, or the lines AP and AO coincide. This
means that the tangent lines to the circumcircle of the triangle ABC and the
circle c at their common point A are both perpendicular to the same line,
which means that these tangent lines also coincide. Hence, these circles are
tangent to each other at point A.

Solution 2. The claim holds if AB = AC, because then the centres of the
circle c and the circumcircle of the triangle ABC are on the line AD, which
means that the tangents of these circles at point A are both perpendicular to
the line AD and hence coincide (Fig. 6). In the following, we assume w.l.o.g
that AC < BC. Let L be the intersection point of the tangent line to circle c
at point A and the line BC (Fig. 7). Since LA and LD are both tangent lines,
we have LA = LD and ∠LAD = ∠LDA. Since AD is an angle bisector,
∠CAD = ∠DAB. Now ∠CBA = ∠LDA− ∠DAB = ∠LAD − ∠CAD =
∠LAC. Using the tangent-chord theorem, we conclude that LA is also a
tangent line to the circumcircle of the triangle ABC.

O11. (Seniors.) On a southern island, there are n fortresses lying on one
line (n > 0). Each fortress is guarded by two elephants, both watching
along the line of fortresses but in the opposite directions. For a fortress A

A

BC
D

O

P
c

Fig. 6

A

B
C DL

c

Fig. 7
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being able to conquer a fortress B, the elephant from A who is watching
towards B must go along the line of fortresses to B, fight with all elephants
who stand on his way and are watching opposite to him (including that
of fortress B but not the other elephant from A), and win them all. Given
that all elephants have different constant weights and a heavier elephant
always wins a lighter elephant, prove that there exists exactly one fortress
that cannot be conquered by any other fortress.

Solution 1. The elephants from the outermost fortresses who watch in the
direction where there are no more fortresses never take part in any fight, so
we can discount them. Until only one fortress remains on the island, repeat
the following: remove the heaviest elephant together with all fortresses and
elephants on his watching direction. Thanks to the initial assumption, at
least one fortress is removed on each step. It is easy to see that the fortress
guarded by the heaviest elephant can conquer all fortresses that are subject
to removal on the current step, while no fortress subject to removal can con-
quer none of the remaining fortresses since that would require winning the
heaviest elephant. Hence the fortress that remains after all other fortresses
are removed can be conquered by none of the other fortresses, while all
other fortresses can be conquered by at least one of the other fortresses.

Solution 2. A fortress being able to conquer another fortress implies the
former fortress also being able to conquer all fortresses between the two
fortresses. Let F1, . . . , Fn be the fortresses along the line. There definitely
exists a fortress which cannot be conquered by any fortress with a smaller
number (for instance, F1 is such). Let Fi be the one with the largest number
among those. We show that this fortress is the one we are looking for.

Suppose that Fj can conquer Fi. Then j > i and Fj can conquer also Fi+1,
. . . , Fj−1. As j > i, there must exist l < j such that Fl can conquer Fj. If
l < i, then Fl can conquer Fi which contradicts the choice of i. If i 6 l, then
because of l < j, Fj can conquer Fl , while Fl can conquer Fj as well. This is
impossible, since in both cases, the two elephants from Fj and Fl looking in
the opposite direction must fight against each other.

It remains to show that there are no more unconquerable fortresses.
Suppose, some Fj, j 6= i, cannot be conquered. If j > i, then this contra-
dicts the choice of i. Hence assume that j < i. Let among the elephants
of Fj+1, . . . , Fi watching towards Fj, that of Fk be the heaviest. As even Fk
cannot conquer Fj, there must exist l such that j 6 l < k and the elephant
from Fl watching towards Fk is heavier than the elephant from Fk watching
towards Fl . But this means that Fl can conquer Fi which is impossible.

Solution 3. We proceed by induction on n. The claim obviously holds if
n = 1. Consider a situation with n + 1 fortresses and assume that the claim
holds for n fortresses. Let A be the fortress on one end of the line and let B
be the next fortress. Let x be the weight of the elephant from A watching
towards B, let y be the weight of the elephant from B watching towards A
and let z be the weight of the other elephant from B. Consider three cases.
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1) The case x < y. When excluding A together with its two elephants,
there must exist exactly one invincible fortress K among the others by the
induction hypothesis. As B can conquer A and the elephant from A cannot
pass B, fortress K is the only invincible also in the presence of A.

2) The case y < x < z. When excluding A together with its two ele-
phants, there must exist exactly one invincible fortress K among the others.
If K 6= B then the fortress that can conquer B can conquer also A while A
cannot conquer K (if A could conquer K, also B could). Consequently, K is
the only invincible fortress also in the presence of A. If K = B then in the
presence of A, A would be the only invincible fortress since it can conquer
B while other fortresses cannot pass B.

3) The case y < x, z < x. Excluding now B together with its two ele-
phants, there must exist a unique invincible fortress L among the others.
Note that adding B does not change the correlation of forces among the
other fortresses. Indeed, if A can conquer another fortress in the situation
without B then it can do it in the presence of B, too, and if some fortress
can conquer A in the situation without B then it can do it in the presence
of B, too. But B can be conquered by A and if B could conquer L then
also A could. As a consequence, L is the only invincible fortress also in the
presence of B.

Remark. This problem, proposed by Estonia, appeared in the IMO 2015
shortlist as C1.

O12. (Seniors.) Find all positive real solutions of the system of equations
x + 1

x − w = 2, y + 1
y − w = 2, z + 1

x + w = 2, y + 1
z + w = 2.

Answer: x = 2, y = w = 1
2 , z = 1.

Solution. Subtracting the second equation from the first and multiplying
by xy we get x2y + y− xy2 − x = 0, which gives either x = y or x = 1

y .
If x = y, then subtracting the fourth equation from the third and mul-

tiplying by xz, we similarly get either x = z or x = − 1
z . If x = z, then

subtracting the third equation from the first gives −2w = 0, hence w = 0,
which is not positive. If x = − 1

z , then x and z cannot be both positive.
If x = 1

y , then subtracting the fourth equation from the third gives z−
1
z = 0, hence z = 1. Adding the first equation with the third gives x+ 2

x = 3,
or x2 − 3x + 2 = 0. This has a solution x = 1, which leads to x = y = z
already considered. The second solution x = 2 gives y = 1

2 and w = 1
2 .

O13. (Seniors.) Denote by f n(x) the result of applying the function f n
times to x (e.g. f 1(x) = f (x), f 2(x) = f ( f (x)), f 3(x) = f ( f ( f (x))) etc).
Find all functions from real numbers to real numbers which satisfy f d(x) =
2015− x for all divisors d of 2015, which are greater than 1, and for all real x.

Answer: f (x) = 2015− x.
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Solution. Since 5 is a divisor of 2015, we have for any real z:

f 25(z) = f 5( f 5( f 5( f 5( f 5(z))))) = 2015− f 5( f 5( f 5( f 5(z)))) =

2015− (2015− f 5( f 5( f 5(z)))) = f 5( f 5( f 5(z))) = . . . = f 5(z) = 2015− z.
Since 13 is also a divisor of 2015, we have for any real z:

f 26(z) = f 13( f 13(z)) = 2015− f 13(z) = 2015− (2015− z) = z.
Consequently z = f 26(z) = f ( f 25(z)) = f (2015− z). Any real number x
can be written as 2015− z for z = 2015− x. Hence z = f (2015− z) implies
f (x) = 2015− x for any real x.

Finally check that the function f (x) = 2015− x satisfies the conditions
of the problem. Let d be a divisor of 2015 greater than 1. Then d is odd,
i.e. d = 2c + 1 for a positive integer c. Since f 2(x) = 2015 − (2015 −
x) = x, we have f 2c(x) = f 2( f 2(. . . f 2(x) . . .)) = x, which implies f d(x) =
f ( f 2c(x)) = f (x) = 2015− x.

O14. (Seniors.) An inventor presented to the king a new exciting board
game on a 9 × 10 squared board. The king promised to reward him one
rice grain for the first square, one rice grain for the second square, and for
each following square the same number of grains as for the two preceding
squares together. Prove that for the last square the inventor gets at least
20154 grains.

Solution. Enumerate all squares with 1, . . . , 90. Let the number of rice
grains promised for the n-th square be Fn; then according to the problem
F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for all n > 2. Notice that Fn > Fn−1 if
n > 2, hence F2(n+1) = F2n+2 = F2n+1 + F2n > F2n + F2n = 2 · F2n for all
n. This implies F2·4 > 2 · F2·3 = 2 · 8 = 24 and by mathematical induction
F2n > 2n for all n > 3. Therefore F90 > 245 > 244 = (211)4 = 20484 > 20154.

O15. (Seniors.) The circumcentre of an acute triangle ABC is O. Line AC
intersects the circumcircle of AOB at a point X, in addition to the vertex A.
Prove that the line XO is perpendicular to the line BC.

A B

C

O

X Y

Z

Fig. 8

Solution 1. By the properties of inscribed
angles ∠CXO = ∠ABO (Fig. 8) independent
of whether the point X lies on the side CA or
on the extension of CA over A. Since O is
the circumcentre of ABC, we have ∠ABO =
∠BAO. Let the intersection of lines XO and
BC be Y and let the point on the circumcircle
of ABC lying diametrically opposite A be Z.
Since ∠CXY = ∠ZAB, and ∠YCX = ∠BZA
as inscribed angles subtending the same arc
AB, the triangles CXY and ZAB are similar.
Hence ∠CYX = ∠ZBA = 90◦, as ∠ZBA is
subtended by a diameter.

11



A B

C

O

X

Fig. 9

Solution 2. Obviously ∠OBC = ∠OCB. If
X lies on segment AC (Fig. 9), then ∠OBX =
∠OAX = ∠OAC = ∠OCA. If X lies on the
extension of AC over A, then ∠OBX = 180◦ −
∠OAX = ∠OAC = ∠OCA. In both cases we
have ∠OBX = ∠OCA and ∠XBC = ∠OBX +
∠OBC = ∠OCA + ∠OCB = ∠ACB = ∠XCB.
Therefore XBC is an isosceles triangle with the
apex X, hence X lies on the perpendicular bisec-
tor of BC. Since O lies on the same line, the line
XO is the perpendicular bisector of the side BC.

O16. (Seniors.) On a switchboard there are nm lamps arranged in an n×
m array. In the beginning all lamps are off. At each step one can switch
three consecutive lamps in one row or in one column, changing the state of
each lamp to the opposite. For which pairs of positive integers (n, m) is it
possible to achieve the situation, where all the lamps are switched on?

1 2 3 1 2 3

2 3 1 2 3 1

3 1 2 3 1 2

1 2 3 1 2 3

2 3 1 2 3 1

Fig. 10

Answer: all pairs (n, m), where either n or m is a
multiple of 3.

Solution. If n (or m) is a multiple of 3, then we
can divide all lamps in each column (or row) into
groups of 3 and switch the lamps on by the groups.

If neither n nor m is a multiple of 3, then color
all lamps by diagonals with three colors (Fig. 10).
Then each switching changes the state of exactly
one lamp of each color, therefore each switching
changes the parity of the number of lamps switched on for each color. Since
in the beginning all lamps are off, the parity of the lamps switched on for
each color always stays the same. Let n = 3a + b and m = 3c + d, where a
and c are nonnegative integers and b and d are either 1 or 2. In regions of
sizes 3a× 3c, b× 3c and 3a× d the numbers of lamps of each color are equal
and hence their parities are equal, but in the remaining b× d region there
is either 1 lamp (Fig. 11), 2 lamps of different colors (Fig. 12 and 13), or 4
lamps, of which 2 are of one color and two others of the two other colors
(Fig. 14), hence the parities of the numbers of lamps of each color are not
equal. Consequently, it is not possible to switch on all lamps.

1

Fig. 11

1 2

Fig. 12

1

2

Fig. 13

1 2

2 3

Fig. 14
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Selected Problems from the Final Round
of National Olympiad

F1. (Grade 9.) Non-equilateral triangle ABC has a 60◦ angle at vertex A.
Let the angle bisector drawn from vertex A intersect the opposite side at

30
◦

30
◦

A B

C

D
Q

R

Fig. 15

point D, and let Q and R be the feet of the
altitudes drawn from vertices B and C, re-
spectively. Prove that lines AD, BQ and CR
intersect in three distinct points that are ver-
tices of an equilateral triangle.

Solution. If line AD passed through the
point of intersection of lines BQ and CR, the
line segment AD would be an altitude of tri-
angle ABC. As AD is also the angle bisec-
tor, triangle ABC would be isosceles with
AB = AC. As ∠BAC = 60◦, triangle ABC
would be equilateral, contradicting the assumption. Hence the lines AD,
BQ, and CR meet in three distinct points.

By assumptions, ∠QAD = ∠RAD = 30◦ and ∠AQB = ∠ARC = 90◦
(Fig. 15). Hence AD and BQ intersect at angle 60◦, as well as AD and CR.
Thus two angles of the triangle whose vertices are the three intersection
points of lines AD, BQ and CR have size 60◦. Such a triangle is equilateral.

F2. (Grade 9.) There are 8 white pawns on the squares at one edge of an
8× 8 chessboard and 8 black pawns on the squares at the opposite edge. On
each move, a player shifts one of his pawns by one or more squares forward
(toward the opponent’s piece) or backward, but moving a pawn to a square
containing the opponent’s pawn or over such a square is prohibited. Moves
are performed alternately, with white starting. The player who cannot make
a move loses. Which player has a winning strategy?

Answer: black player.
Solution. Black can use the following strategy. If white moves his kth

pawn counting from his left, by n squares forward, black moves his kth
pawn counting from his left, by n squares forward. If white moves his
pawn by n squares backward, black moves his pawn on the same file by
n squares forward. After each move made by black, the distance between
two pawns on each file is the same as that on the file symmetric w.r.t. the
midpoint of the board. Thus whenever a white pawn has moved forward,
the black can make the move determined by the strategy described. As the
black pawns move forward only, white will be paralyzed sooner or later.

F3. (Grade 9.) Determine the largest possible number of primes among 100
consecutive natural numbers.
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Answer: 26.
Solution. There are 25 primes among the numbers from 1 to 100. The

number of primes in the next a few number intervals with length 100 are
shown in the table:

Interval change w.r.t. previous Number
of primesout in

1, . . . , 100 25
2, . . . , 101 1 101 26
3, . . . , 102 2 102 25
4, . . . , 103 3 103 25
5, . . . , 104 4 104 25
6, . . . , 105 5 105 24
7, . . . , 106 6 106 24

The largest number of primes in these number intervals is 26.
We show now that there cannot be more primes among 100 consecutive

natural numbers. Consider arbitrary 100 consecutive natural numbers, the
least of which is larger than 7. None of the numbers under consideration
that is divisible by one of numbers 2, 3, 5 and 7 is a prime. We show in
the rest that there are at least 74 such numbers. As every second number is
divisible by 2, there are 50 even numbers. As every third number is divisible
by 3, there are at least 33 such numbers. Every second among them has
been counted as an even number, thus there are at least 16 new numbers
divisible by 3. As every fifth number is divisible by 5, there are at least 20
such numbers. Every second among them is even, thus the number of odd
numbers divisible by 5 is 10. Among them in turn, every third is divisible
by 3, thus there are at least 6 numbers divisible by 5 not counted yet. As
every seventh number is divisible by 7, there are at least 14 such numbers.
Every second among them is even, thus there are at least 7 odd numbers
divisible by 7. Every third among them is divisible by 3, which eliminates
at most 3 numbers, and every fifth is divisible by 5, which eliminates at
most 2 numbers. Hence at least 2 numbers not counted before are divisible
by 7. Altogether, we have at least 50 + 16 + 6 + 2 = 74 composite numbers.

F4. (Grade 10.) Find all four-digit numbers which are exactly by 2016 larger
than the four-digit number obtained by moving the first digit to the end.

Answer: 3109, 4220, 5331, 6442, 7553, 8664, and 9775.
Solution. Let the first digit of the number be a and the number formed

by the remaining digits be k. By the conditions, 1000a + k = 10k + a + 2016,
whence 111a− k = 224. Hence a > 3, implying the solutions a = 3, k = 109;
a = 4, k = 220; a = 5, k = 331; a = 6, k = 442; a = 7, k = 553; a = 8,
k = 664; a = 9, k = 775. The corresponding four-digit numbers satisfying
the conditions of the problem are 3109, 4220, 5331, 6442, 7553, 8664, and
9775.
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F5. (Grade 10.) Find all pairs (a, b) of integers satisfying the equality

3(a2 + b2)− 7(a + b) = −4.

Answer: (0, 1), (1, 0), (2, 2).
Solution 1. The given equation is equivalent to (6a− 7)2 + (6b− 7)2 =

50. Number 50 can be represented as the sum of two squares as 25 + 25 or
1+ 49. Hence both 6a− 7 and 6b− 7 must be among the numbers 7, 5, 1,−1,
−5 and −7. As both a and b are integers, only 5, −1 and −7 fit. We obtain
the following cases: 6a − 7 = 5, 6b − 7 = 5; 6a − 7 = −1, 6b − 7 = −7;
6a− 7 = −7, 6b− 7 = −1. The corresponding solutions are a = 2, b = 2;
a = 1, b = 0; and a = 0, b = 1.

Solution 2. Consider the equation as a quadratic equation w.r.t. b. In
order to have solutions, its discriminant must be non-negative, i.e., 49 −
12(3a2 − 7a + 4) > 0. This condition is equivalent to the quadratic in-
equality 36a2 − 84a − 1 6 0, whose solutions are (7 −

√
50) / 6 6 a 6

(7 +
√

50) / 6. As a is an integer, its only suitable values are 0, 1, and 2,
the corresponding values of b are 1, 0, and 2.

F6. (Grade 10.) Call a convex polygon on a plane correct if for its every
side there exists a unique vertex of the polygon that lies farther from that
side than any other vertex of the polygon. Call the perpendicular drawn
from the vertex farthest from side XY to side XY an altitude of the correct
polygon. Find all natural numbers n for which there exists a correct n-gon
whose all n altitudes meet in one point.

x

y

O A1

A2

A3

A4A5

Fig. 16

Answer: all natural numbers n > 3.
Solution. Let one of the vertices be O(0, 0)

and let the other vertices A1, . . . , An−1 lie on a
circle with radius 1 and centre O in such a way
that A1(1, 0), An−1(0, 1) and A2, . . . , An−2 are all
on the shorter arc A1 An−1 (Fig. 16 depicts the
case n = 6). The vertex farthest from line OA1
is An−1, the vertex farthest from line OAn−1 is
A1. The vertex farthest from any other line deter-
mined by a side of the polygon is O because the
line passing through O parallel to such a side lies in II and IV quarters while
the other vertices of the polygon lie above it in I quarter. Thus the polygon
is correct. The altitudes drawn to sides OA1 and OAn−1 are OAn−1 and
OA1, respectively, they meet at point O. As O is the vertex farthest from
any other side, all other altitudes meet in O, too.

Remark. If n is odd, then a regular n-gon is correct with its all altitudes
meeting in the circumcentre.

F7. (Grade 10.) Manni and Miku play the following game with rooks on an
8× 8 chessboard. At the beginning of the game, Miku places 8 rooks to the
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squares of the board according to his will. Then both players make moves
alternately, Manni starts. On any move, each player shifts exactly one rook
along a rank or file (i.e. row or column) by one or more squares in one
direction. If a rook moves to a square that contains another rook, the latter
is removed from the board; it is not allowed to move a rook over another.
A player who is the first to remove a rook from the board wins; however,
neither moving nor removing a rook that was moved by the opponent on
his last move is allowed. Does either of the players have a winning strategy
and if yes then which of them?

Answer: neither does.
Solution. We show at first that Miku can play in such a way that Manni

can never remove a rook. Let there be one rook in each rank and file in the
initial configuration. Suppose that Manni moves a rook from square (x, y)
to square (x, z). As a consequence, each file contains one rook but there are
no rooks in rank y and two rooks in rank z; let a rook be on square (t, z),
t 6= x. Let Miku move the rook from square (t, z) to square (t, y). After that,
there is one rook in each rank and file again. In the case of Manni’s move
in the perpendicular direction, Miku’s reply would be analogous. In such a
way, Miku can reply to all Manni’s following moves.

Now we show that also Manni can play so that Miku never wins. If there
are two or more rooks on one rank or file in the initial configuration then
Manni can remove one of them and win immediately. Therefore assume
that initially there is one rook on each rank and file. Let there be rooks on
squares (1, u) and (2, v). Manni can move the rook from (2, v) to square
(2, u). As Miku is not allowed to remove this rook but Manni threatens
to remove the rook on (1, u) on the next move, Miku must move this rook
to some square (1, w). If w 6= v, Manni can win by moving the rook from
square (2, u) to square (2, w) and removing either of the other rooks on rank
w on the next move. If w = v, then there is one rook in each rank and file
again and Manni can continue with the same strategy.

Remark. In Manni’s strategy, it is important to move one rook immedi-
ately besides another rook (otherwise Miku would win by moving a third
rook between them) and the attacked rook lies by the edge of the board
(otherwise Miku would win by moving the attacked rook farther away so
that the rook moved by Manni would itself remain under attack).

F8. (Grade 11.) Find the largest natural number n for which 32016 − 1 is
divisible by 2n.

Answer. 7.
Solution. We have 32016 − 1 = (363 − 1)(363 + 1)(3126 + 1)(3252 + 1) ·

· (3504 + 1)(31008 + 1). Numbers 3126, 3252, 3504 and 31008 are squares of odd
numbers, hence congruent to 1 modulo 8. Thus 3126 + 1, 3252 + 1, 3504 + 1
and 31008 + 1 are congruent to 2 modulo 8. Consequently, these four factors
are divisible by 2 but not by 4. As 362 ≡ 1 (mod 8), we have 363 ≡ 3
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(mod 8). Hence 363 − 1 and 363 + 1 are congruent to 2 and 4 modulo 8,
respectively. The former thus is divisible by 2 but not by 4 and the latter is
divisible by 4 but not by 8. Putting it all together, the exponent of 2 in the
product is 1 + 2 + 1 + 1 + 1 + 1 = 7.

F9. (Grade 11.) Three workers must do a work completely. At first, one
of them works as long as the other two would work together to complete
one half of the work. Then another worker works as long as the other two
would work together to complete one half of the work. Finally the third
worker works as long as the other two would work together to complete
one half of the work. With this, the whole work becomes completed. How
many times faster would the work become completed if all the workers
worked together?

Answer: 2.5.
Solution 1. Let the contributions of the first, second and third worker

per a time unit be x, y, z, measured as percentages of the whole work. One
half of the work would be done by the second and third worker together
within 1

2(y+z) time units, by the third and first worker together within 1
2(z+x)

time units and, by the first and second worker together, within 1
2(x+y) time

units. By working in the way described in the problem text, they spend
1

2(y+z) +
1

2(z+x) +
1

2(x+y) time units, but if they worked all together, they

would spend 1
x+y+z time units. We are asked the ratio of these numbers.

Since by assumption x
2(y+z) +

y
2(x+z) +

z
2(x+y) = 1, we get

1
2(y+z) +

1
2(z+x) +

1
2(x+y)

1
x+y+z

=
x + y + z
2(y + z)

+
x + y + z
2(z + x)

+
x + y + z
2(x + y)

=

=
1
2
+

x
2(y + z)

+
1
2
+

y
2(z + x)

+
1
2
+

z
2(x + y)

=
3
2
+ 1 = 2.5.

Solution 2. Suppose that the first worker worked a time units, the sec-
ond worker worked b time units and the third worker worked c time units.
Altogether, they spend a + b + c time units to perform the whole work. If
the second worker worked a time units and the third also a time units, they
would perform half of the work. Similarly, if the third worker worked b
time units and the first also b time units then they would complete half of
the work, and if the first worker worked c time units and the second also c
time units, they would complete half of the work. Consequently, if the first
worker worked b + c time units, the second worker worked a + c time units
and the third worked worked a + b time units, they would complete one
and a half such works. Including the work really done, it turns out that if
all workers worked a + b + c time units then they would perform 2.5 such
works. Thus the three workers together would act 2.5 times faster than in
the situation of the problem.
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F10. (Grade 11.) In the space, rays k, l, m originate from a point O. Let the
size of the angle between k and l be α, the size of the angle between l and m
be β and the size of the angle between m and k be γ, whereby α + β 6 180◦.
Ray r bisects the angle between k and l; ray s bisects the angle between l
and m. Is it sure that the size of the angle between r and s is γ

2 ?
Answer: no.
Solution. Let O be a vertex of a cube and let rays k, l and m be directed

along the edges of the cube. Then α = β = γ = 90◦. Rays r and s are
directed from vertex O along the angle bisectors of the faces that are diag-
onals at the same time. The other endpoints of the diagonals, R and S, are
endpoints of the diagonal of one and the same face of the cube. The three
diagonals form an equilateral triangle ORS, whence ∠ROS = 60◦. Thus the
size of the angle between rays r and s is not equal to half of the size of the
angle between rays k and m.

F11. (Grade 11.) Each point at the sides of an equilateral triangle is col-
ored either red or blue. Is it sure that there exists a right triangle whose all
vertices are of the same colour?

Answer: yes.
Solution 1. Let the equilateral triangle be XYZ. We show that there exists

a point on some side that has the same colour as its projection to another
side. For that, take points P, Q and R on sides XY, YZ and ZX, respectively,
in such a way that XP : XY = YQ : YZ = ZR : ZX = 1 : 3 (Fig. 17). Then
PQ ⊥ YZ because, denoting the midpoint of YZ by T, TQ : TY = ( 1

2 −
1
3 ) :

1
2 = 1 : 3 = XP : XY, implying PQ ‖ XT. Hence Q is the projection of P
to YZ. Analogously, R is the projection of Q to ZX and P is the projection
of R to XY. As at least two points among P, Q and R must have the same
colour, a point and its projection have the same colour.

W.l.o.g., let P and its projection Q both be red. Let M be the projection of
Q to XY and N the projection of M to YZ. If M is red, then PQM is a right
triangle with all vertices red. If N is red, then PQN is a right triangle with
all vertices red. If Y is red, then PQY is a right triangle with all vertices red.
Otherwise, MNY is a right triangle with all vertices blue.

X

Y Z

P

Q

R

T

M

N

Fig. 17

E

A B

D

S

Fig. 18
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Solution 2. Consider a regular hexagon whose vertices lie on the sides of
the triangle (Fig. 18). Suppose that two opposite vertices of the hexagon are
of the same colour. If there is one more vertex of the same colour among
the other four vertices, there is a right triangle with all vertices being of that
colour. Otherwise, any three vertices among the four remaining ones form a
right triangle with all vertices being of the other colour. If any two opposite
vertices are of different colours, then there exist two neighbouring vertices
of different colours. The corresponding opposite vertices are of different
colours, too. One pair of these differently coloured vertices lies on a side
of the initial triangle; let these be A and B (red and blue, resp.) and their
opposite vertices D and E (blue and red, resp.). Angles ABD and BAE are
right. Let S be any point on AB that is not a vertex of the hexagon. If S is
red, then SAE is a right triangle with all vertices red; if S is blue, then SBD
is a right triangle with all vertices blue.

F12. (Grade 11.) In the beginning, there are two positive integers on a
blackboard. On each step, one chooses numbers a and b such that a 6 b
from the numbers on the blackboard in all possible ways (equality means
that one may take the same number twice), finds all corresponding sums
a + b + gcd(a, b) and replaces all the numbers on the blackboard instantly
with these sums. Prove that at some step at least one number will occur
more than once on the blackboard.

Solution 1. If the numbers chosen from the blackboard are x and y, then
the number x + y + gcd(x, y) will be on the blackboard on the next step. If
x is chosen together with itself, the number x + x + gcd(x, x) = 3x will be
on the blackboard on the next step. We show that there will be two equal
numbers on the blackboard after the second step at latest. Assume that
the initial numbers are n and m and the numbers n + m + gcd(n, m), 3n
and 3m appearing on the first step are all distinct. Choosing number n +
m + gcd(n, m) together with itself, we obtain 3(n + m + gcd(n, m)) = 3n +
3m + 3 gcd(n, m). Choosing 3n and 3m, we obtain 3n + 3m + gcd(3n, 3m).
As gcd(3n, 3m) = 3 gcd(n, m), the same number will appear twice after the
second step.

Solution 2. Let the largest number on the blackboard after step s and the
number of numbers on the blackboard after step s be m(s) and n(s), respec-
tively. Obviously m(s + 1) = m(s) + m(s) + gcd(m(s), m(s)) = 3m(s), as
x 6 m(s) and y 6 m(s) imply gcd(x, y) 6 m(s). Thus m(s) = 3sm(0) for
all s. Suppose that there will never be equal numbers on the blackboard.
Then n(s + 1) = n(s)·(n(s)+1)

2 > n(s)2

2 for every s. Since n(0) = 2, we get
n(1) = 3 and n(2) = 6. An easy induction shows that n(s) > 2 · 32s−2

for
every s > 2. Thus n(s)

m(s) > 2
m(0) · 3

2s−2−s. If s → ∞, the number 32s−2−s be-

comes larger than m(0)
2 , so n(s) > m(s). On the other hand, n(s) 6 m(s)

since the numbers are positive, a contradiction.
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F13. (Grade 12.) Denote the number of all positive divisors of a positive
integer n by δ(n) and the sum of all positive divisors of a positive integer n
by σ(n). Prove that σ(n) > δ(n)2

2 .
Solution 1. Let a1, a2, . . . , aδ(n) be the positive divisors of n in the increas-

ing order. We obtain σ(n) = a1 + a2 + . . . + aδ(n) > 1 + 2 + . . . + δ(n) =
δ(n)·(δ(n)+1)

2 > δ(n)2

2 .
Solution 2. For every positive divisor d of a positive integer n, d + n

d >

2
√

d · n
d = 2

√
n. Thereby if d 6=

√
n, the inequality is strict. If n is not

a perfect square, then by adding all these inequalities for divisors d <
√

n
leads to σ(n) > δ(n)

2 · 2
√

n = δ(n)
√

n, since every divisor of n occurs exactly
once in a pair (d, n

d ). If n is a perfect square, then analogously σ(n) >
δ(n)−1

2 · 2
√

n+
√

n = δ(n)
√

n. On the other hand, if n is not a perfect square
then the number of pairs (d, n

d ) where d <
√

n, is less than
√

n, whence
√

n > δ(n)
2 . If n is a perfect square then the number of such pairs is at most

√
n− 1, which gives

√
n− 1 > δ(n)−1

2 implying
√

n > δ(n)
2 again. Hence,

σ(n) > δ(n)
√

n > δ(n) · δ(n)
2 = δ(n)2

2 .
Remark. Denote by σk(n) the sum of kth powers of the divisors of pos-

itive integer n. Both solutions directly generalize to show the inequality

σk(n) > δ(n)k+1

2k for all k > 1 (in the first solution, one has to apply the
inequality between the kth power mean and the arithmetic mean).

F14. (Grade 12.) Some cities of a country are connected with roads. We say
that a city A belongs to a cycle of length n if one can travel from A through
exactly n − 1 other cities and return back to A. It is known that each city
of the country belongs to a cycle of length 4 and also to a cycle of length 5.

A1

B1

A2

B2

A3

B3

A4

B4

A5

B5

Fig. 19

Is it sure that a) at least one city belongs to
a cycle of length 3? b) each city belongs to a
cycle of length 3?

Answer: a) no; b) no.
Solution. Let there be 10 cities and let

cities be connected as in the Fig. 19. Then
every city belongs to a cycle of length 5 and
also to a cycle of length 4. On the other
hand, no cycles of length 3 exist.

F15. (Grade 12.) There are 125 distinct positive integers in a row in such a
way that among every three consecutive numbers the second one is larger
than the arithmetic mean of the first and the third one. Find the largest
number in the row, given that it is as small as possible under such condi-
tions.

Answer: 2016.
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Solution. Let the numbers in a row be a1, a2, . . . , a125. By conditions,
we have ai+1 >

ai+ai+2
2 for every i = 1, 2, . . . , 123, which is equivalent

to ai+1 − ai > ai+2 − ai+1. Denoting di = ai+1 − ai, we have d1 > d2 >
. . . > d124. Let am be the largest among a1, . . . , a125; then d1, d2, . . . , dm−1
are positive and dm, dm+1, . . . , d124 are negative. If both 1 and −1 occurred
among the differences d1, d2, . . . , d124, then they should be consecutive, i.e.,
di = 1 and di+1 = −1 for some i, whence ai+1 = ai−1. Contradiction to the
assumption that the given numbers are distinct shows that either 1 or −1 is
missing among the differences. W.l.o.g., assume that 1 is missing (if −1 is
missing, we can reverse the numeration of the given numbers). Then am =
a1 + (d1 + d2 + . . . + dm−1) > 1+ (m + (m− 1) + . . . + 2) = 1+ 2+ . . . + m
and am = a125 − (dm + dm+1 + . . . + d124) > 1 + (1 + 2 + . . . + (125−m)).
Among numbers m and 125− m, one is at least 63, whence the previously
established inequalities imply am > 1 + 2 + . . . + 63.

On the other hand, taking a1 = 1 and di = 64 − i, 1 6 i 6 62, and
di = 62− i, 63 6 i 6 124, the largest number a63 equals 1 + 2 + . . . + 63,
while all numbers ai are positive, as 1 = a1 < a2 < . . . < a63 and a63 >
a64 > . . . > a125 = (1 + 2 + . . . + 63)− (1 + 2 + . . . + 62) = 63. All these
numbers are distinct, since for every i = 64, 65, . . . , 125, ai = (1 + 2 + . . . +
63)− (1 + 2 + . . . + (i− 63)) = (i− 62) + (i− 61) + . . . + 63 = a127−i − 1,
whence ai lies strictly between a126−i and a127−i. Consequently, the largest
number written in the row is 1 + 2 + . . . + 63, i.e., 2016.

IMO Team Selection Contest I

S1. There are k heaps on the table, each containing a different positive
number of stones. Jüri and Mari make moves alternatingly; Jüri starts. On
each move, the player making the move has to pick a heap and remove one
or more stones in it from the table; in addition, the player is allowed to dis-
tribute any number of remaining stones from that heap in any way between
other non-empty heaps. The player to remove the last stone from the table
wins. For which positive integers k does Jüri have a winning strategy for
any initial state that satisfies the conditions?

Answer: for any k.
Solution 1. Call a position balanced, if the non-empty heaps can be di-

vided into pairs, with an equal number of stones in both heaps of each pair.
We show that in a balanced position, the player who moves second has a
winning strategy. If there are no heaps left, the second player has already
won. In the general case, suppose that the first player picks the heap H,
takes n stones from it off the table, and moves a1 stones to the first heap, a2
stones to the second, etc. If any stones are left in H after that, the second
player can then pick the heap H′ that is paired with H, remove n stones
from it, and move a1 stones to the heap paired with the first heap, a2 stones
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to the heap paired with the second heap, etc. On the other hand, if the first
player empties the heap H, the second player does the same as in the first
case, with the following exception: if the first player moved any stones to
H′, the second player takes this many additional stones off the table instead
of moving them back to H, ensuring that the heap H′ also becomes empty.
In both cases, the position after the second player’s move is balanced again.
Since the number of stones on the table decreases with each move and the
second player can always make a move, the second player eventually wins.

Finally, we show that Jüri can move into a balanced position with his
first move, giving him a winning strategy. Number the heaps 1, 2, . . . , k in
decreasing order of size, and let the sizes of the heaps be a1 > a2 > · · · > ak.
Jüri should pick heap 1 and move a2 − a3 stones to heap 3, a4 − a5 stones
to heap 5, etc. If k is odd, Jüri should take all stones remaining in heap 1
off the table; if k is even, he should leave ak stones in heap 1. It remains to
verify that this move is possible. If k = 1, the game will be over after Jüri’s
move. For k > 1, (a2 − a3) + (a4 − a5) + · · · + (ak−1 − ak) < (a1 − a2) +
(a2− a3) + (a3− a4) + (a4− a5) + · · ·+ (ak−1− ak) = a1− ak, which shows
that after redistributing stones to odd-numbered heaps, there are still more
than ak stones left in heap 1, so the move is possible for both odd and even
k. Furthermore, the strictness of the inequality ensures that some stones
will be left to take off the table as required.

Solution 2. Let a balanced position be defined as in solution 1. First we
show that from any non-balanced position, there exists a move to a bal-
anced position. This can be done by ignoring all existing pairs of equal-
sized heaps and proceeding as in solution 1 (distributing stones from the
biggest remaining heap). Second, we show that there is no move from a
balanced position to another balanced position. Suppose for the sake of
contradiction that such a move exists. For any positive integer i, let ui and
vi be the number of heaps with at least i stones before and after that move.
Since both positions are balanced, all numbers ui and vi are even. Since
the number of stones decreases in only one heap, vi ≥ ui − 1; parity now
implies ui ≤ vi for all i.

Before the move, let’s number all stones in each heap with consecutive
integers starting from 1. Then for each i, there are ui stones numbered i
on the table, and the total number of stones before the move is therefore
u1 + u2 + . . .. Analogously, the number of stones after the move is v1 +
v2 + . . .. The inequality ui ≤ vi now implies that the number of stones on
the table does not decrease with the move, a contradiction with the rules
of the game. Since the initial position is not balanced and the number of
stones decreases with each move, always moving into a balanced position
is a winning strategy for Jüri.

S2. Let p be a prime number. Find all triples (a, b, c) of integers (not nec-
essarily positive) such that abbcca = p.
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Answer: if p > 2 then (p, 1, 1) and (−p, 1,−1) together with cyclic per-
mutations; if p = 2 then (2, 1, 1), (2, 1,−1), (2, 2,−1) and (−2, 2,−1) to-
gether with cyclic permutations.

Solution. Suppose a, b, c satisfy the equation. As p is positive, this im-
plies that |a|b|b|c|c|a = p. Clearly none of a, b, c can be zero.

Observe that gcd(a, b, c) = 1. Indeed, if d | a, d | b, d | c, then the
exponent of p in the canonical representation of each of the positive rational
numbers |a|b, |b|c, |c|a is divisible by d. Hence the exponent of p in the
canonical representation of the product |a|b|b|c|c|a is divisible by d. As this
product equals to p, we get |d| = 1.

Consider now arbitrary prime number q different from p. Let α, β, γ be
the exponents of q in the canonical representation of the positive integers
|a|, |b|, |c|, respectively. Then αb + βc + γa = 0 whereby not all exponents
α, β, γ are positive because gcd(a, b, c) = 1. Consequently, if some of α, β,
γ is positive, then there must be exactly two positive exponents among α,
β, γ. W.l.o.g., assume α > 0, β > 0, γ = 0. Then αb + βc = 0, implying
α|b| = β|c|. Hence |b| divides β|c|. As qβ divides |b| while qβ is relatively
prime to |c|, this implies qβ | β and qβ ≤ β which is impossible. This means
that actually α = β = γ = 0 and |a|, |b|, |c| are all powers of p.

Hence the equation rewrites to pαb pβc pγa = p where α, β, γ are now the
exponents of p in the canonical representation of |a|, |b|, |c|, respectively.
This is equivalent to αb + βc + γa = 1. By gcd(a, b, c) = 1, one of α, β, γ
must be zero, and clearly, one of the summands αb, βa, γa must be positive.
W.l.o.g., let αb > 0, i.e., α > 0 and b > 0. Now there are three cases.

If β = 0 and γ = 0 then b = 1 and |c| = 1. Furthermore, αb + βc + γa =
1 reduces to α = 1, whence |a| = p. If p > 2 then the exponents of a and c
in the original equation, b and a, are both odd, whence a and c must have
the same sign to make the product abbcca positive. Both triples (p, 1, 1)
and (−p, 1,−1) satisfy the original equation. If p = 2 then ca is positive
anyway, hence a must be positive. Both triples (2, 1, 1) and (2, 1,−1) satisfy
the original equation.

If β = 0 and γ > 0 then b = 1. Furthermore, αb + βc + γa = 1 reduces
to α + γa = 1, whence a < 0. We obtain pα ≤ γpα = γ|a| = α − 1 < α
which is impossible.

If β > 0 and γ = 0 then |c| = 1. Furthermore, αb + βc + γa = 1 reduces
to αb + βc = 1, which gives c = −1 and αpβ = 1 + β as the only possibility.
If p > 2 then this leads to contradiction similar to the previous case. If
p = 2 then α = β = 1 is the only solution. This leads to triples (2, 2,−1)
and (−2, 2,−1) which both satisfy the original equation.

S3. Find all functions f : R → R satisfying the equality f (2x + 2y) =
2y f ( f (x)) f (y) for every x, y ∈ R.

Answer: f (x) = 0 and f (x) = 2x.
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Solution. Substituting y = −2x−1 into the original equation gives

f (0) =
1

22x−1 f ( f (x)) f (−2x−1). (1)

So, if f (−2x) = 0 for at least one x then also f (0) = 0. Then taking x = 0
and arbitrary y in the original identity gives f (1 + 2y) = 0, i.e., f ≡ 0.

Assume in the rest that f (−2x) 6= 0 for every x. Substituting y = −2x

into the original equation gives f (−2x) = 1
22x f ( f (x)) f (−2x). Hence, for

every x,
f ( f (x)) = 22x

(2)
Substituting (2) into the original equation and taking y = 0, we obtain
f (2x) = f ( f (x)) f (0) = 22x f (0) for all x, which implies

f (x) = 2x f (0) (3)
for all positive x. On the other hand, applying (2) to (1) gives

f (−2x−1) =
22x−1

22x · f (0) = 2−2x−1
f (0)

for all x, which implies (3) also for all negative x.
We have shown above that f (0) = 0 implies f (x) = 0 for all x. Hence

we may assume that f (0) is either positive or negative. By taking x = 0
in (2) and applying (3), we obtain 2 = 220

= f ( f (0)) = 2 f (0) · f (0). Both
f (0) < 1 and f (0) > 1 would lead to contradiction, hence f (0) = 1 and the
only non-zero solution is thus f (x) = 2x.

S4. Prove that for any positive integer n, 2 ·
√

3 · 3√4 · . . . · n−1
√

n > n.
Solution 1. For 2 ≤ k ≤ n, the GM-HM inequality for the numbers k, . . . ,

k, 1, with k repeated k− 2 times, gives

k− 1 =
(k− 1)2

k− 1
=

k(k− 2) + 1
k− 1

>
k−1√kk−2 =

k−1

√
kk−1

k
=

k
k−1√k

.

Hence k−1√k > k
k−1 for every k = 2, 3, . . . , n, with equality only for k = 2.

Therefore

2 ·
√

3 · 3√4 · . . . · n−1
√

n >
2
1
· 3

2
· 4

3
· . . . · n

n− 1
= n.

Solution 2. For 2 ≤ k ≤ n, the HM–GM inequality for the numbers 1, . . . ,
1, k (with 1 repeated k− 2 times) gives

k−1√k >
k− 1

k− 2 + 1
k
=

(k− 1)k
(k− 2)k + 1

=
(k− 1)k
(k− 1)2 =

k
k− 1

,

with equality only for k = 2. We continue as in solution 1.
Solution 3. From the binomial theorem,(
k

k− 1

)k−1
=

(
1 +

1
k− 1

)k−1
=

(k−1
0 )

(k− 1)0 +
(k−1

1 )

(k− 1)1 + . . . +
(k−1

k−1)

(k− 1)k−1 .
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There are k summands, of which (k−1
0 )

(k−1)0 =
(k−1

1 )

(k−1)1 = 1, and for 1 < i 6 k− 1

(k−1
i )

(k− 1)i =
(k− 1) · . . . · (k− i)

i! · (k− 1)i <
(k− 1) · . . . · (k− i)

(k− 1)i < 1.

Therefore
( k

k−1
)k−1

6 1 + 1 + . . . + 1︸ ︷︷ ︸
k times

= k, whence k−1√k > k
k−1 , with equal-

ity only for k = 2. We continue as in solution 1.
Solution 4. We show that kk > (k + 1)k−1 for k > 2. The case k = 2

is obvious. Suppose now that kk > (k + 1)k−1 holds for some k, and let’s
prove (k + 1)k+1 > (k + 2)k. Note that (k + 1)k+1 · (k + 1)k−1 = (k + 1)2k =(
k2 + 2k + 1

)k
>
(
k2 + 2k

)k
= (k(k + 2))k = kk · (k + 2)k, giving (k+1)k+1

kk >
(k+2)k

(k+1)k−1 . This combined with the induction assumption gives

(k + 1)k+1 =
(k + 1)k+1

kk · kk >
(k + 2)k

(k + 1)k−1 · (k + 1)k−1 = (k + 2)k.

We have proven kk > (k + 1)k−1, which is equivalent to k−1√k > k√k + 1.
Therefore k−1√k > n−1

√
n for k = 2, 3, . . . , n− 1, and

2 ·
√

3 · 3√4 · . . . · n−1
√

n >
( n−1
√

n
)n−1

= n.

Solution 5. We give another proof for the inequality kk > (k + 1)k−1. It
is equivalent to k · ( k

k+1 )
k−1 > 1, or k · k

k+1 · . . . · k
k+1︸ ︷︷ ︸

k− 1 times

> 1. Note that for x <

k + 1, x− x · k
k+1 = x ·

(
1− k

k+1

)
= x · 1

k+1 < 1. Therefore, multiplication

with each factor k
k+1 decreases the product by less than 1; cumulatively

the product becomes smaller by less than k − 1. Therefore k · ( k
k+1 )

k−1 >

k− (k− 1) = 1.

S5. Let O be the circumcentre of the acute triangle ABC. Let c1 and c2 be
the circumcircles of triangles ABO and ACO. Let P and Q be points on c1
and c2 respectively, such that OP is a diameter of c1 and OQ is a diameter
of c2. Let T be the intesection of the tangent to c1 at P and the tangent to c2
at Q. Let D be the second intersection of the line AC and the circle c1. Prove
that the points D, O and T are collinear.

Solution. Since ∠OAP = ∠OAQ = 90◦, the points P, A and Q are
collinear. Since ∠OPT = ∠OQT = 90◦, OPTQ is cyclic. Since OA = OB,
the diameter OP of c1 is perpendicular to the chord AB. Therefore PT and
AB are parallel. Now ∠TOQ = ∠TPQ = ∠TPA = ∠BAP = ∠BOP =
90◦ − ∠ABO. On the other hand, equality of inscribed angles subtending
the arc AO of circle c1 gives ∠CDO = ∠ABO (figures 20 and 21 show two
possible situations). Therefore ∠DOQ = 90◦ −∠CDO = 90◦ −∠ABO. In
summary, ∠TOQ = ∠DOQ, whence D, O and T are collinear.
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Remark. This problem originally appeared in the 1st Selection Examina-
tion of the Slovenian IMO team in 2015.

S6. A circle is divided into arcs of equal size by n points (n ≥ 1). For any
positive integer x, let Pn(x) denote the number of possibilities for colouring
all those points, using colours from x given colours, so that any rotation of
the colouring by i · 360◦

n , where i is a positive integer less than n, gives a
colouring that differs from the original in at least one point. Prove that the
function Pn(x) is a polynomial with respect to x.

Solution 1. Call a colouring of the n points permissible if it satisfies the
conditions of the problem (is not invariant under any non-full rotation).
Call two colourings equivalent if any two points are coloured the same by
the first colouring iff they are coloured the same by the second. Clearly,
any two equivalent colourings use the same number of colours, and if one
is permissible, so is the other. Consider an equivalence class whose colour-
ings use exactly y colours. The number of colourings in this class that use
colours from a given set of x colours is x(x− 1) . . . (x− y + 1). This holds
also for x < y, the product then being zero. Pn(x) is equal to the sum of
those products over all equivalence classes of permissible colourings, and
is therefore a polynomial with respect to x.

Solution 2. Consider all colourings of the n points with colours from
among x given colours. The total number of the colourings is xn. Let the
period of a colouring be the least positive number d such that d/n of a full ro-
tation gives the same colouring. Pn(x) is therefore the number of colourings
with period n. A standard argument gives that the period of any colouring
is a divisor of n.

Let’s count the number of colourings with period d. Any such colour-
ing is determined by the colouring of the first d points, and there may
be no smaller period among those points; therefore, there are Pd(x) such

c1

c2
A

B

CO

D

P

Q

T

Fig. 20

c1

c2

A

B

C

O

D

P

Q

T

Fig. 21
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colourings. Now we get xn = ∑d|n Pd(x) and therefore Pn(x) = xn −
∑d|n, d<n Pd(x). Since P1(x) = x, induction by n now gives that Pn(x) is
a polynomial for any n.

Remark. The Möbius inversion formula gives Pn(x) = ∑d|n µ
( n

d
)

xd,
where µ is the Möbius function. For example, P15(x) = x15 − x5 − x3 + x
and P16(x) = x16 − x8.

The set of colourings with period n can be divided into groups of size
n, each group consisting of the rotations of a single colouring. Therefore,
Pn(x) is divisible by n. For a prime p, Pp(x) = xp − x, so we get Fermat’s
little theorem as a special case.

IMO Team Selection Contest II

S7. On the sides AB, BC and CA of triangle ABC, points L, M and N
are chosen, respectively, such that the lines CL, AM and BN intersect at a
common point O inside the triangle and the quadrilaterals ALON, BMOL
and CNOM have incircles. Prove that

1
AL · BM

+
1

BM · CN
+

1
CN · AL

=
1

AN · BL
+

1
BL · CM

+
1

CM · AN
.

Solution. ALON is a circumscribed quadrilateral, hence AL + ON =
AN + OL. Similarly BM + OL = BL + OM and CN + OM = CM + ON.
By adding the equations we obtain AL + BM + CN = AN + BL + CM.
Lines CL, AM and BN intersect in one point, we get from Ceva’s theorem
AL · BM · CN = AN · BL · CM. By dividing the left hand sides of the last
two equations with the right hand sides we obtain the required equation.

S8. Let x, y and z be positive real numbers such that x+ y+ z = 1
x +

1
y +

1
z .

Prove that xy + yz + zx ≥ 3.
Solution 1. Using the given equation and inequality of arithmetic and

geometric means, we obtain

xy + yz + zx = xyz
(

1
x
+

1
y
+

1
z

)
=

xyz
(

1
x + 1

y + 1
z

)2

x + y + z
=

=
xyz

(
1
x2 +

1
y2 +

1
z2

)
+ 2x + 2y + 2z

x + y + z
>

xyz
(

1
xy + 1

yz +
1
zx

)
x + y + z

+ 2 = 3.

Solution 2. Multiply both sides of the given equation with xyz:

x2yz + xy2z + xyz2 = yz + xz + xy. (4)

By the AM-GM inequality, x2y2 + y2z2 > 2
√

x2y4z2 = 2xy2z, and anal-
ogously y2z2 + z2x2 > 2yz2x and z2x2 + x2y2 > 2zx2y. By adding the
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three equations and using equation (4) we get 2(x2y2 + y2z2 + z2x2) >
2(x2yz + xy2z + xyz2) = 2(xy + yz + zx) or

x2y2 + y2z2 + z2x2 > xy + yz + zx. (5)

By multiplying the original inequality with xy + yz + zx we get an equiv-
alent inequality x2y2 + y2z2 + z2x2 + 2(x2yz + xy2z + xyz2) > 3(xy + yz +
zx). This is true because of (4) and (5).

Solution 3. Given inequality is equivalent to ( 1
x +

1
y +

1
z )(xy+ yz+ zx) >

3(x + y + z). By opening the brackets we can see that this in turn is equiva-
lent to 1

x · yz+ 1
y · zx + 1

z · xy > x + y+ z and also to 1
x · yz+ 1

y · zx + 1
z · xy >

1
y · xy + 1

z · yz + 1
x · xz. The latter inequality is a variant of rearrangement

inequality.

S9. Let n be a positive integer such that there exists a positive integer
that is less than

√
n and does not divide n. Let (a1, . . . , an) be an arbitrary

permutation of 1, . . . , n. Let ai1 < . . . < aik be its maximal increasing
subsequence and let aj1 > . . . > ajl be its maximal decreasing subsequence.
Prove that tuples (ai1 , . . . , aik ) and (aj1 , . . . , ajl ) altogether contain at least
one number that does not divide n.

Solution 1. The first phase of the solution consists in showing that kl > n.
For every i = 1, . . . , n, let f (i) denote the length of the longest increasing
subsequence ending with ai, and let g(i) be the length of the longest de-
creasing subsequence ending with ai. For distinct indices i < j, if ai < aj
then f (i) < f (j), and if ai > aj then g(i) < g(j). Hence pairs of the form
( f (i), g(i)) where i = 1, . . . , n are all distinct, i.e., there are n different such
pairs in total. By the conditions of the problem, the largest number of the
form f (i) is k and the largest number of the form g(i) is l. Thus the number
of pairs of the form ( f (i), g(i)) is at most kl. Consequently, n 6 kl.

From this result, we deduce k + l > 2
√

kl > 2
√

n by AM-GM. At most
one number can belong to an increasing and a decreasing subsequence si-
multaneously. Thus subsequences (ai1 , . . . , aik ) and (aj1 , . . . , ajl ) together
contain at least 2

√
n− 1 different natural numbers in total. By assumptions,

number n has at most
⌊√

n
⌋
− 1 divisors that are not larger than

√
n, the to-

tal number δ(n) of divisors of n satisfies the inequality δ(n) 6 2
⌊√

n
⌋
− 2.

Consequently, subsequences (ai1 , . . . , aik ) and (aj1 , . . . , ajl ) together contain
at least one number that does not divide n.

Solution 2. The inequality kl > n can be proven also in the following
way. Let us partition the permutation (a1, . . . , an) into decreasing subse-
quences using the following algorithm. The first element of each new sub-
sequence is the first unused element in the original permutation, the next is
the first following to it in the original permutation unused element smaller
than it etc., until no more elements can be chosen this way. Let these subse-
quences be K1, . . . , Kx in the order of forming.
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For every z = x, x− 1, . . . , 2 and every element aj of Kz, there exists an
element ai in Kz−1 such that i < j and ai < aj. Indeed, suppose the contrary.
Then all elements ai of Kz−1 such that i < j are greater than aj. This means
that aj should have been chosen into Kz−1, a contradiction.

Hence, starting from an arbitrary element bx of Kx, we can choose an el-
ement bx−1 from Kx−1, an element bx−2 from Kx−2, etc, until b1 from K1, in
such a way that b1 < . . . < bx−1 < bx. This is an increasing subsequence of
length x of the original permutation. As every element of the original per-
mutation belongs to one of K1, . . . , Kx, there exists a decreasing subsequence
of length at least n

x . Now k > x and l > n
x together give kl > x · n

x = n.
Solution 3. Another algorithm can be used for partitioning the permuta-

tion (a1, . . . , an) into decreasing subsequences in such a way that there ex-
ists an increasing subsequence with each element representing a different
part. Let the first element of each new subsequence be the largest among
the unused elements, the next be the largest following to it in the original
sequence unused element etc., until no more elements can be chosen this
way. Let these subsequences be L1, . . . , Ly in the order of forming.

For every z = y, y− 1, . . . , 2 and every ai from Lz, there exists an element
aj from Lz−1 such that i < j and ai < aj. Indeed, suppose the contrary. Then
all elements aj in Lz−1 such that i < j are smaller than ai. This means that ai
should have been chosen into Lz−1, contradiction.

Hence, starting from an arbitrary element cy of Ly, we can choose an
element cy−1 from Ly−1, an element cy−2 from Ly−2 etc., until c1 from L1, in
such a way that cy < cy−1 < . . . < c1. The rest is as in Solution 2.

Remark 1. For proving the auxiliary claim kl > n, it is straightfor-
ward to apply Erdős-Szekeres theorem that tells that every vector of length
(k− 1)(l− 1)+ 1 of real numbers contains either an increasing subsequence
of length k or a decreasing subsequence of length l. Indeed, assume that
kl < n; then the subsequence of kl + 1 initial elements one can find either
an increasing subsequence of length k + 1 or a decreasing subsequence of
length l + 1, contradiction. The proof of kl > n presented in Solution 1 is a
variant of the proof of Erdős-Szekeres theorem given in Wikipedia.

Remark 2. Using Chebyshev’s theorem, one can show that for every nat-
ural number n > 25, there exists a positive integer less than

√
n by which n

is not divisible. Hence the claim of the problem holds for all natural num-
bers n except for a certain finite number of them. A case study shows that
the only numbers for which the claim of the problem is not valid are 1, 2, 4,
6 and 12.

S10. Let m be an integer, m > 2. Each student in a school is practising
m hobbies the most. Among any m students there exist two students who
have a common hobby. Find the smallest number of students for which
there must exist a hobby which is practised by at least 3 students.

Answer: m2.
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Solution. If the number of students is m2 − 1 = (m− 1)(m + 1), let us
split the students to m− 1 groups, each with m + 1 students. Assume that
each student has a unique common hobby with every other student in the
same group and none of the students is practising any other hobby. Then
each student has exactly m hobbies but among each m students at least two
of them belong to the same group i.e have a common hobby. Hence the
conditions of the problem are satisfied but there exists no hobby which is
practised by more than 2 students. If there are less than m2 − 1 students
at the school, similar construction can be used with a suitable number of
students omitted.

Let us show that if there are at least m2 students at school, then there
must exist a hobby that is practised by at least 3 students. Assume the con-
trary that every hobby is practised by 2 students at most. Let us form a
group of students in which each pair of students have no hobby in com-
mon by adding in each iteration to initially empty group one student who
does not have a common hobby with any of the students already assigned
to the group. As every student has m hobbies the most and each hobby can
be common with only one other student, after i iterations there are at most
i(m + 1) students who cannot be added to the group in the subsequent it-
erations. As (m− 1)(m + 1) < m2, it is still possible to add another student
to a group of m− 1 students. Therefore, there exists a group of m students,
in which there exists no pair who have a common hobby. That contradicts
the conditions of the problem statement.

Remark. The problem can be generalised by still limiting the number of
hobbies for each student to m but requiring a pair of students with a com-
mon hobby among each group of k students. Then the maximum number
of students is (k− 1)(m + 1) + 1 = km−m + k. The proof is analogical to
the one in the solution.

S11. Find all positive integers n such that (n2 + 11n− 4) · n! + 33 · 13n + 4
is a perfect square.

Answer: n = 1 and n = 2.
Solution. Let us denote an = (n2 + 11n− 4) · n! + 33 · 13n + 4. If n > 4,

then 8 divides n!. Hence an ≡ 33 · 13n + 4 ≡ 5n + 4 (mod 8). As 52 ≡ 1
(mod 8), then 5n ≡ 1 (mod 8) for all even n. Therefore, an ≡ 5 (mod 8),
if n > 4 and n is even. But perfect squares leave remainders 0, 1 or 4 when
dividing by 8.

Secondly, when n > 7, then 7 divides n!. So an ≡ 33 · 13n + 4 ≡ 5 ·
(−1)n + 4 (mod 7). Therefore, for odd n > 7 an ≡ −5 + 4 = −1 (mod 7).
But perfect squares leave remainders 0, 1, 4 or 2 when dividing by 7.

We are left with possible candidates n = 1, n = 2, n = 3 and n = 5. For
n = 5, an is not a perfect square because a5 ≡ 33 · 135 + 4 ≡ 36 − 1 ≡ 3
(mod 5), but perfect squares leave remainder 0, 1 or 4 when divided by 5.
Also, an is not a perfect square for n = 3, because a3 = (9+ 33− 4) · 6+ 33 ·
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133 + 4 ≡ 3+ 34− 1 ≡ 3 (mod 5). Finally, we can check that a1 = (1+ 11−
4) · 1 + 33 · 13 + 4 = 441 = 212 and a2 = (4 + 22− 4) · 2 + 33 · 169 + 4 =
5625 = 752.

Remark. This problem originally appeared in the 3rd Selection Examina-
tion of the Slovenian IMO team in 2014.

S12. The circles k1 and k2 intersect at points M and N. The line l intersects
with the circle k1 at points A and C and with circle k2 at points B and D, so
that points A, B, C and D are on the line l in that order. Let X be a point on
line MN such that the point M is between points X and N. Lines AX and
BM intersect at point P and lines DX and CM intersect at point Q. Prove
that PQ ‖ l.

k1

k2

l

A

B
C

D

M

N

P

Q

R

S

X

Y
Z

O

Fig. 22

Solution 1. Let Y be the second in-
tersection of line AX with the circle k1
and Z be the second intersection of line
DX with the circle k2 (Fig. 22). As X
is on the radical axis of k1 and k2, we
have XY · XA = XZ · XD from which
the points A, Y, Z and D lie on the same
circle. Therefore ∠XZY = ∠XAD and
∠XYZ = ∠XDA.

Let R be the intersection of CM and
AX. Let S be the intersection BM and
DX. Points R and X lie on the same side
of points A and Y, points S and X lie on
the same side of points D and Z. Points
R and Q lie on the same side of points C
and M, points S and P lie on the same
side of points B and M. As A, Y, M
and C lie on the same circle k1, we have ∠QMY = ∠RMY = ∠RAC =
∠XAD = ∠XZY = ∠QZY. As Q and Y lie on the same side of line MN
but Z on the other side, M and Z lie on the same side of line QY. Hence the
equation ∠QMY = ∠QZY implies that Q, Y, M and Z lie on the same circle.
Similarly we get ∠PMZ = ∠SMZ = ∠SDB = ∠XDA = ∠XYZ = ∠PYZ,
which can be used to analogically show that P, Z, M and Y lie on the same
circle. Finally, P, Q, Y and Z have to lie on the same circle in that order (Q
and Y lie on the same side of line MN, P and Z on the other side). Therefore,
∠QPA = ∠QPY = ∠QZY = ∠XZY = ∠XAD = ∠PAD, which implies
PQ ‖ l (because Q and D are on different sides of AP).

Solution 2. Let O be the intersection of AD and MN. Let’s use coordinate
system with an origin O, x-axis along the line AD and y-axis along the line
MN. Then the coordinates of points A, B, C, D, M and X are respectively
(a, 0), (b, 0), (c, 0), (d, 0), (0, u) and (0, v) for some real numbers a, b, c, d, u,
v. As O is on the radical axis of the circles k1 and k2, we have ac = bd = p,
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where p is the power of point O with respect to circles k1 and k2.
The equation for line AX in the coordinate system is x

a + y
v = 1 and the

equation for line BM is x
b + y

u = 1. The y-coordinate of the intersection of
those lines hence satisfies a

(
1− yP

v
)
= b

(
1− yP

u
)
, from which yP = (b−a)uv

bv−au .
Analogically the equations for the lines DX and CM, i.e. x

d + y
v = 1 and

x
c +

y
u = 1, give the y-coordinate of Q to be yQ = (c−d)uv

cv−du . Substituting here
c = p

a and d = p
b yields to

yQ =

( p
a −

p
b
)

uv
p
a v− p

b u
=

b−a
ab uv

bv−au
ab

=
(b− a)uv
bv− au

.

As yP = yQ, the line PQ is parallel to x-axis and the line l.
Remark. This problem originally appeared in the Croatian Mathematical

Olympiad in 2015.
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