
Problems from Estonian mathematical contests 1998/1999

Problems from the final round

10th grade

1. Find all pairs of integers (a, b) such that a2 + b = b1999 .

Answer: (0;−1), (0; 0) and (0; 1).

Solution. The given condition is equivalent to a2 = b(b1998−1). If b > 2 then b and b1998−1

are both positive and relatively prime, hence both perfect squares. But since b1998 is also
a perfect square, we get a contradiction. So b 6 1. The cases b = 1, b = 0 and b = −1
all give a = 0. At last note that b 6 −2 is impossible because it implies a2 < 0.

2. Find all values of a such that absolute value of one of the roots of the equation

x2 + (a− 2)x− 2a2 + 5a− 3 = 0

is twice of absolute value of the other root.

Answer:
5

4
,
7

5
and

5

3
.

Solution. Solving the equation, one gets

x =
−(a− 2)±

√

(a− 2)2 − 4 · (−2a2 + 5a− 3)

2
=

=
2− a±

√
a2 − 4a+ 4 + 8a2 − 20a+ 12

2
=

=
2− a±

√
9a2 − 24a+ 16

2
=

2− a±
√

(3a− 4)2

2
,

so

x1 =
2− a− (3a− 4)

2
= −2a+ 3 , x2 =

2− a+ (3a− 4)

2
= a− 1 .

Assume |x1| = 2|x2| , i.e. | − 2a + 3| = 2 · |a − 1| . The numbers a − 1 and −2a + 3 are

negative iff a < 1 and a >
3

2
respectively. Thus in the case a < 1 the condition reduces

to −2a+3 = 2(1− a), and in the case a >
3

2
the condition reduces to 2a− 3 = 2(a− 1).

Hence both cases are impossible. So 1 6 a 6
3

2
, which gives −2a + 3 = 2(a − 1) and

a =
5

4
.

Now assume |x2| = 2|x1| , i.e. |a − 1| = 2 · | − 2a + 3| . In the case a < 1 this condition

reduces to 1 − a = 2(−2a + 3), which gives a =
5

3
, but this is not sound with the case

assumption a < 1. In the case 1 6 a 6
3

2
the condition reduces to a − 1 = 2(−2a + 3)

which gives a =
7

5
, and in the case a >

3

2
the condition reduces to a − 1 = 2(2a − 3)

which gives a =
5

3
.
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3. The incircle of the triangle ABC , with the center I , touches the sides AB , AC and BC

in the points K , L and M respectively. Points P and Q are taken on the sides AC and
BC respectively, such that |AP | = |CL| and |BQ| = |CM | . Prove that the difference of
areas of the figures APIQB and CPIQ is equal to the area of the quadrangle CLIM .

Solution. We have SAPI = SCLI since |AP | = |CL| and both triangles have altitude LI .
Analogously we have SALI = SCPI since |AL| = |CP | . But △ALI ∼= △AKI because
the sides are respectively equal. Hence

SAPIK − SCPI = SAKI + SAPI − SCPI = SALI + SCLI − SALI = SCLI .

Analoguously we find that

SBMIK − SCQI = SCMI .

Thus we have

SAPIQB − SCPIQ = SAPIK + SBMIK − SCPI − SCQI = SCLI + SCMI = SCLIM .

4. 32 stones, with pairwise different weights, and lever scales without weights are given. How
to determine by 35 scaling, which stone is the heaviest and which is the second by weight?

Solution. At first we determine the heaviest stone by 31 scalings and find at the same
time 5 stones, one of which must be the second by weight. This can be achieved by pairing
all the 32 stones and comparing the stones in each pair; after that pairing the heavier
stones and comparing again the stones in each pair, etc. This takes 16+8+4+2+1 = 31
scalings. By the last scaling we find the heaviest stone and the second by weight may be
only one of these five which have been in pair with the heaviest.

To complete the solution we must determine by 4 scaling, which of these 5 stones is the
heaviest. It can be done linearly.

5. Let C be an interior point of line segment AB . Equilateral triangles ADC and CEB

are constructed to the same side from AB . Find all points which can be the midpoint of
the segment DE .

Answer: the midline of the equilateral triangle constructed on the segment AB which is
parallel to AB (endpoints excluded).

q

A B

G

D

E
F

C

Figure 1

Solution. Let F be the midpoint of the segment DE . Lengthen the segments AD and
BE till intersecting in point G (see figure 1). The location of the point G does not depend
on the point P and the quadrangle ECDG is a parallelogram with the point F as the
midpoint of its diagonals. While the point C moves along AB from A to B , point F

moves from the midpoint of AG to the midpoint of BG along the segment connecting
these points. According to the condition of the problem, the endpoints must be excluded.
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11th grade

1. Find all pairs of integers (m,n) such that

(m− n)2 =
4mn

m+ n− 1
.

Answer: the pairs (k,−k) and

(
k(k + 1)

2
,
k(k − 1)

2

)

, (where k is an arbitrary integer),

(1, 0) and (0, 1) excluded.

Solution. By multiplying both sides of the equation with the denominator of the right
side, we get (m−n)2(m+n−1) = 4mn , which gives (m+n)2 = (m−n)2(m+n). Hence

m+ n = 0 or m+ n = (m− n)2 . The first case gives n = −m , i.e. all the pairs (k,−k),

where k is integer, are suitable. In the second case take m − n = k , then m + n = k2

and m =
k2 + k

2
, n =

k2 − k

2
. To ensure the denominator of the fraction in the problem

is not zero the condition m+ n 6= 1 must be added, so k 6= 1 and k 6= −1.

2. Find the value of the expression

f
( 1

2000

)

+f
( 2

2000

)

+ . . .+f
(1999

2000

)

+f
(2000

2000

)

+f
(2000

1999

)

+ . . .+f
(2000

1

)

assuming f(x) =
x2

1 + x2
.

Answer: 1999
1

2
.

Solution. One gets the answer directly using the fact that for any non-zero real number
x ,

f(x) + f
(1

x

)

=
x2

1 + x2
+

(
1
x

)2

1 +
(
1
x

)2 =
x2

1 + x2
+

1

x2
· 1

1 + 1
x2

=

=
x2

1 + x2
+

1

1 + x2
= 1 .

3. For the given triangle ABC , prove that a point X on the side AB satisfies the condition−−→
XA · −−→XB +

−−→
XC · −−→XC =

−→
CA · −−→CB iff X is the basepoint of the altitude or median of the

triangle ABC (~v · ~u denotes the scalar product of vectors ~v and ~u).

A BX

C
O

� -

Figure 2

� ~
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Solution. Since
−→
CA =

−−→
XA−−−→

XC and
−−→
CB =

−−→
XB−−−→

XC (see figure 2), the condition in the

problem is equivalent to the condition
−−→
XA ·−−→XB+

−−→
XC ·−−→XC = = (

−−→
XA−−−→

XC)·(−−→XB−−−→
XC).

Transforming this, we get the equation
−−→
XC · (−−→XA+

−−→
XB) = 0.

This condition holds iff
−−→
XA+

−−→
XB = 0 or

−−→
XC ⊥ −−→

XA+
−−→
XB . The first case holds iff X is

the midpoint of the side AB , the second case holds iff X is on the altitude.

4. For which values of n it is possible to cover the side wall of staircase of
n steps (for n = 6 in the figure) with plates of shown shape? The width
and height of each step is 1 dm, the dimensions of plate are 2× 2 dm
and from the corner there is cut out a piece with dimensions 1× 1 dm.

Answer: n = 3k or n = 3k + 2, except n = 3 and n = 5.

Solution. The area of the side wall of the staircase is 1+ 2+ . . .+n =
n(n+ 1)

2
dm2 , the

area of each plate is 3 dm2 . Thus one of the numbers n and n + 1 must be divisible by
3, i.e. it isn’t possible to plate the side wall of the staircase if n ≡ 1 (mod 3).

Consider the cases n = 2, n = 3, n = 5. Clearly, if n = 2 then the plating is possible.
If n = 3 then one of the plates must be in the vertex of the wall and it is not possible to
cover the remaining part with plates with required shape (see figure 3). If n = 5 then two
plates must be in vertices of the wall. The remaining part has shape 3× 3 and thus can’t
be covered with 3 plates, because otherwise one of these plates must cover two different
vertices of the 3× 3 square.

n = 3 n = 5n = 2

Figure 3

In the cases n = 6 and n = 9 the wall can be covered as shown in figure 4.

n = 9n = 6

Figure 4

Now we give a method how to construct plating in case n = 3k + 6 from plating in case
n = 3k . Thus the wall can be plated for any n = 3k , k > 1. For this leave unplated the
lower ribbon of the wall with height 6 dm and plate the upper part as in case n = 3k .
The ribbon can be plated as shown in figure 5.
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. . .

︸ ︷︷ ︸

k rectangles

Figure 5

At last we show how to get the plating in the case n = 3k + 2 from the plating in the
case n = 3k . This implies the wall can be plated for any n = 3k+2, k > 1. For this leave
unplated the lower ribbon with height 2 dm and plate the upper part as in case n = 3k .
The ribbon can be covered as shown in figure 6.

. . .

︸ ︷︷ ︸

k rectangles

Figure 6

5. On the squares a1, a2, . . . , a8 of a chessboard there are respectively 20, 21, . . . , 27 grains
of oat, on the squares b8, b7, . . . , b1 respectively 28, 29, . . . , 215 grains of oat, on the
squares c1, c2, . . . , c8 respectively 216, 217, . . . , 223 grains of oat etc. (so there are 263

grains of oat on the square h1). A knight starts moving from some square and eats after
each move all the grains of oat on the square to which it had jumped, but immediately
after the knight leaves the square the same number of grains of oat reappear. With the
last move the knight arrives to the same square from which it started moving. Prove that
the number of grains of oat eaten by the knight is divisible by 3.

Solution: The arrangement of grains of oat described in the problem implies that on each
white square of the chessboard there are 22n grains, while on each black square there
are 22n+1 grains, where n = 0, 1, 2, . . . , 31. Therefore the number of grains on any black
square is congruent to 1 modulo 3 and the number of grains on any white square is
congruent to 2 modulo 3. Since the knight moves always from a square of one colour to a
square of the other colour the number of grains it eats with each two consecutive move is
divisible by 3. But knight makes an even number of moves, because the initial and final
square are of the same colour. Hence the assertion of the problem holds.

12th grade

1. Let a , b , c and d be non-negative integers. Prove that the numbers 2a7b and 2c7d give
the same remainder when divided by 15 iff the numbers 3a5b and 3c5d give the same
remainder when divided by 16.

Solution. First we show that if |a′ − a| = |b′ − b| = 2 then 2a7b ≡ 2a
′

7b
′

(mod 15) and

3a5b ≡ 3a
′

5b
′

(mod 16). Indeed we can assume that a′ = a+ 2. If b′ = b+ 2, we obtain

2a
′

7b
′

= 2a7b · 2272 = 2a7b · (2 · 7)2 ≡ 2a7b · (−1)2 = 2a7b (mod 15)
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and

3a
′

5b
′

= 3a5b · 3252 = 3a5b · (3 · 5)2 ≡ 3a5b · (−1)2 = 3a5b (mod 16) .

If b′ = b − 2, we can use the same relations noting that 74 ≡ 1 (mod 15) and

54 ≡ 1 (mod 16).

Now we prove that for every pair of non-negative integers (a, b) there exists a pair (a′, b′)

such that 2a7b ≡ 2a
′

7b
′

(mod 15), 3a5b ≡ 3a
′

5b
′

(mod 16), a′ ∈ {0, 1, 2, 3} and b′ ∈ {0, 1}.
We conclude that both of the exponents can be changed by a number divisible by 4 without
changing the remainder of dividing by the required number. Thus we can consider only
the case where a, b ∈ {0, 1, 2, 3}. If b 6 1, take a′ = a and b′ = b ; if b > 1 then b′ = b− 2
and a′ can be chosen from the set {0, 1, 2, 3} so that it differs from the number a exactly
by 2.

It remains to prove that the remainders of the numbers 2a
′

7b
′

when divided by 15 and the

remainders of the numbers 3a
′

5b
′

when divided by 16 are pairwise different if the numbers
a′ and b′ come from the abovementioned sets. This can be seen from the following tables.

The remainder of

Number dividing by 15

2070 1

2170 2

2270 4

2370 8

2071 7

2171 14

2271 13

2371 11

The remainder of

Number dividing by 16

3050 1

3150 3

3250 9

3350 11

3051 5

3151 15

3251 13

3351 7

2. Find the value of the integral

1∫

−1

ln
(

x+
√

1 + x2
)

dx.

Answer: 0.

Solution. Let f(x) = ln(x +
√

1 + x2). We always have 1 + x2 > x2 , so
√

1 + x2 > |x| ,
thus f(x) is defined for every x . We will show that the function f(x) is odd, i.e.
f(−x) = −f(x). Indeed,

f(−x) = ln(−x+
√

1+(−x)2) = ln

(

(
√
1+x2 − x)(

√
1+x2 + x)√

1+x2 + x

)

=

= ln

(

1 + x2 − x2√
1 + x2 + x

)

= ln

(

1

x+
√
1 + x2

)

=

= − ln(x+
√

1 + x2) = −f(x) .
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Now let

I =

1∫

−1

f(x) dx, I1 =

0∫

−1

f(x) dx, I2 =

1∫

0

f(x) dx .

Making the substitution x = −t in the integral I1 , we obtain

I1 = −
0∫

1

f(−t) dt =

1∫

0

f(−t) dt = −
1∫

0

f(t) dt = −I2 .

Consequently

I = I1 + I2 = −I2 + I2 = 0 .

3. Prove that the line segment, joining the orthocenter and the intersection point of the me-
dians of the acute-angled triangle ABC is parallel to the side AB iff tan 6 A · tan 6 B = 3.

Solution: Let the basepoints of the altitudes drawn from the vertices A and C be D and
E respectively and let the orthocenter be H (see figure 7). Note first that H lies on the
line parallel to AB and passing through the intersection point of the medians if and only if
|CE|
|EH| = 3, thus it is enough to prove that

|CE|
|EH| = tan 6 A ·tan 6 B . As 6 AHE = 6 CHD ,

we also have 6 EAH = 6 BCE , i.e. the right triangles CEB and AEH are similar and

tan 6 B =
|CE|
|EB| =

|AE|
|EH| . Noting that tan 6 A =

|CE|
|AE| , we obtain the necessary relation.

·

·

H

D
C

EA B

Figure 7

4. Let us put pieces on some squares of 2n × 2n chessboard in such a way that on every
horizontal and vertical line there is an odd number of pieces. Prove that the whole number
of pieces on the black squares is even.

Solution: Enumerate all the horizontal and vertical lines by numbers 1, . . . , 2n and assume
that the square (1, 1) is black (this does not restrict generality). Let A be the number
of pieces on the squares with even horizontal and vertical line number, B the number of
pieces on the squares with odd horizontal and vertical line number and C the number of
pieces on the squares with even horizontal and odd vertical line number. Then A+ C is
the number of pieces with even horizontal line number and B + C the number of pieces
with odd vertical line number. As the number of such horizontal and vertival lines is the
same, these numbers have the same parity and thus the number of pieces on the black
squares A+B = (A+ C) + (B + C)− 2C is even.

5. The numbers 0, 1, 2, . . . , 9 are written (in some order) on the circumference. Prove that

a) there are three consecutive numbers with the sum being at least 15;

b) it is not necessarily the case that there exist three consecutive numbers with the sum
more than 15.
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Solution: a) The sum of numbers on the circumference is 45 and thus adding the ten
triple sums gives 3 · 45 = 135. Note that in every two neighbouring triples there are two
common numbers and the third one is different, so their sums must be different. Hence,
if the largest sum would be 14, we should have the sums 13 and 14 altering. But then
the sum of every six-tuple should be 27 which is not possible, because the sums of two
neighbouring six-tuples must also be different.

b) Write on the circumference the numbers in the following order: 3, 8, 1, 5, 9, 0, 6, 7, 2,
4. Now it is elementary to check that no triple gives the sum greater than 15.

Problems from the open contests

Younger group (up to 10th grade)

1. John knows n > 3 positive real numbers and he writes them all on the blackboard (every
number may occur more than once). Mary writes under every number the arithmetic mean
of the other n− 1 numbers and then deletes the initial numbers. She repeats the process
for 1998 times. After that Mary notices that there are exactly the initial numbers on the
blackboard. How many different real numbers does John know?

Answer: John knows one positive real number.

Solution. Let M be the greatest of the initial numbers. For arbitrary b1, . . . , bn−1

b1 + . . .+ bn−1

n− 1
6

n−1
︷ ︸︸ ︷

M + . . . +M

n− 1
= M

and the equality holds if and only if b1 = . . . = bn−1 = M . If there were at least two
numbers less than M on the blackboard then all the next numbers would also be less
than M . And then of course on the 1998th time there cannot be M on the blackboard.
If only one of the numbers on the blackboard is less than M then the next time there
would be already two numbers less than M . Therefore all the initial numbers were equal
and John knows only one positive real number.

2. Two different points X and Y are chosen in the plane. Find all the points Z in this plane
for which the triangle XY Z is isosceles.

q qX Y

c1 c2
s

Answer: All the points on the circumferences c1 and c2 except the five points lying on
the line XY (see the figure).
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Solution. If the points X , Y and Z are the vertices of an isosceles triangle then
|XZ| = |XY | , |Y Z| = |XY | or |XZ| = |Y Z| . The points Z such that |XZ| = |XY |
lie on the circumference c1 . The points Z such that |Y Z| = |XY | are situated on the
circumference c2 . The points Z such that |XZ| = |Y Z| are situated on the midperpen-
dicular s of the segment XY . It is clear that the points determine a triangle if and only
if they do not lie on the same line.

3. Prove that for every integer k the following assertions are equivalent (if one is true then
the other is also true and vice versa):

a) exist nonnegative integers a and b so that k = a2 + b2 + ab ,

b) exist nonnegative integers c and d so that k = c2 + d2 − cd .

Solution. We shall use the relations

n2 +m2 + nm = (n+m)2 +m2 − (n +m)m, (1)

n2 +m2 − nm = (n−m)2 +m2 + (n −m)m. (2)

Let k be expressed in the form k = a2 + b2 + ab . Denoting a = n , b = m on the left side
and c = n+m , d = m on the right side of the relation (1) we obtain

a2 + b2 + ab = k = c2 + d2 − cd.

Let now k be expressed in the form k = c2 + d2 − cd . Without loss of generality we can
assume that c > d . Denoting c = n , d = m on the left side and a = n −m , b = m on
the right side of the relation (2) we obtain

c2 + d2 − cd = k = a2 + b2 + ab.

4. Find all the four-digit numbers n such that multiplying n by
9

2
we obtain the number

which consists of the same digits as n but in the opposite order.

Answer: 1818 and 1998.

Solution. Let n = abcd . Since 4,5 · abcd < 10000 then a = 1 or a = 2. The digit d has

to be even. At the same time multiplying it by
9

2
the last digit of the product must be

1 or 2. Consequently a = 2 and d = 6 or a = 1 and d = 8. Let us examine these cases
separately.

1) If a = 2 and d = 6 then
9

2
· abcd > 9000 which contradicts d = 6.

2) If a = 1 and d = 8 then we obtain

(1000 + 100b+ 10c+ 8) · 9
2
= 8000 + 100c + 10b+ 1

3465 + 55c = 440b

63 + c = 8b.

This equation has two solutions: c = 1, b = 8 and c = 9, b = 9. These values will give us
the numbers 1818 and 1998.

1. The teacher wrote an addition exercise on the blackboard

A

B
+

C

D
+

E

F
= ,

9



where A , B , C , D , E , F are positive integers, all three fractions are reduced and their
denominators are pairwise relatively prime. The pupil adds the fractions writing the least
common multiple of the denominators of the summands as the denominator of the result.
Prove that the fraction that the pupil writes is reduced.

Solution. As the denominators of the fractions are pairwise relatively prime, their least

common multiple is BDF and so the resulting fraction is in form
ADF + CBF + EBD

BDF
.

Let’s suppose antithetically that this fraction is reducable by some number greater than
one. Then there exists a prime number p which divides both the numerator and the
denominator of this fraction. As the product BDF is divisible by the prime number p

so one of terms if divisible by it: without loss of generality we can assume that this term
is B . But then two summand in sum ADF + CBF + EBD are divisible by p and as
the sum is divisible by p by assumption, the summand ADF is divisible by p as well.
Therefore either A , D or F is divisible by p . In the first case we get a contradiction with

the fraction
A

B
being reduced, in other cases with assumption that the denominators of

the initial fractions were pairwise relatively prime.

Comment. Analogical assertion can be proved in case where there are more than three
fractions as summands.

2. Prove that the value of the expression

1 +
1

1 +
1

1 +
1

1 + n

is not an integer for any integer n .

Solution. The expression given in the problem is not defined when n = −1 or n = −2.

The value of this expression is 1 +
n+ 2

2n + 3
what is an integer iff

n+ 2

2n+ 3
is an integer i.e.

the number 2n + 3 divides the number n + 2. We will show that no such integer exists.
As n 6= −1 and n 6= −2 then |3 + 2n| 6= 1. If there exits an integer n for which the

fraction
n+ 2

2n+ 3
could be reduced with some number d > 1 then both 2n + 3 and n + 2

would be divisible by d , so 2 · (n + 2) = 2n + 4 would be divisible by d as well and
(2n + 4)− (2n + 3) = 1 would be divisible by d—a contradiction. Therefore the fraction
n+ 2

2n + 3
is reduced for all integers n 6= −1, −2 and the value of given expression can’t be

an integer for any integer n .

3. On the plane there are two non-intersecting circles with equal radii and with centres O1

and O2 , line s going through these centres, and their common tangent t . The third circle
osculates these two circles in points K and L respectively, line s in point M and line t

in point P . The point of tangency of line t and the first circle is N .

a) Find the length of the segment O1O2 .

b) Prove that the points M , K and N lie on the same line.

Answer: a) 2
√
2R .
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Solution. a) The radius of the third circle is obviously
R

2
; let its centre be O3 (see

figure 8) and |O1O2| = c . Considering that the triangle O1MO3 is a right triangle with

the hypotenuse R +
R

2
=

3R

2
and legs

R

2
and

c

2
, we get

(R

2

)2
+
( c

2

)2
=
(3R

2

)2
, from

where R2 + c2 = (3R)2 , c2 = 8R2 and c = 2
√
2R .

p p
p p

p

p

pO3

O1 O2

pN P

LK s

t

Figure 8

M

A1

A2

A3

A4

A5A6

A7

A8

A9

Figure 9

b) Let’s denote 6 PMK = α . From the isosceles triangle O3MK we get 6 MKO3 = α and
6 KO3M = π−2α . As the segments PM and NO1 are parallel the angle 6 KO1N = π−2α
and from the isosceles triangle KO1N we get 6 O1NK = α . Therefore the segments MK

and NK parallel, that means the points N , K and M lie on the same line.

4. For which values of n (n > 3) is it possible to draw on a plane such a closed broken line
consisting of n links that every link has exactly one point in common with every other
link so that this point is an end point or an inner point for both links, and no point on
the plane is an end point for more than two links?

Answer: it is possible iff n is odd.

Solution. When n = 2k + 1 is odd we can get the necessary construction in the following
way. Let A1, A2, . . . , A2k+1 be the vertices of a regular (2k+1)-gon. We draw a segment
from every vertex Ai to vertices Ai+k (or A(i+k)−(2k+1) , if i+ k > 2k + 1) and Ai−k (or

A(i−k)+(2k+1) , if i−k < 1). We can see that a closed broken line is obtained. Indeed, from
one side every vertex is connected to exactly two other vertices, from the other side it is
possible to reach any vertex from any other vertex, moving by links. To be convinced in
the latter assertion it is enough to notice that starting from the vertex Ai we can reach
the vertex Ai+1 using two links and hence continuing in the same way any other vertex.
In addition we have to prove that every link has exactly one common point with every
other link (either end point or inner point). Without loss of generality let’s consider the
link A1Ak+1 . All the other links AiAj (i < j ) can be divided into three classes:

1) i = 1, j = k + 2; in this case these links have a common end point A1 ;

2) i = k , j = 2k + 1; in this case these links have a common end point Ak ;

3) 1 < i < k+1, k+1 < j < 2k+1; in this case the vertices Ai and Aj lie on different
sides of the line A1Ak and because of convexity of initial regular (2k+1)-gon the
links A1Ak and AiAj have a common inner point.

An example for the case n = 9 is given on the figure 9.

Now let’s show that no broken line having an even number of links does not satis-
fy the requested conditions. Let’s denote the vertices of the broken line in the or-
der of passing by B1, B2, . . . , Bn . Let’s consider the line B1B2 . As every segment
B3B4, B4B5, . . . , Bn−1Bn has to intersect it, the vertices B3, B5, . . . , Bn−1 lie on one side
and the vertices B4, B6, . . . , Bn on the other side of that line. Therefore the segments
B2B3 and BnB1 can’t have common points.
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5. Two palmists were asked several questions about the life of mr. X, each of which had to

be answered with
”
yes“ or

”
no“. The palmist A answered correctly to

22

43
of questions

which were answered uncorrectly by the palmist B , palmist B answered correctly to
4

7
of questions which were answered uncorrectly by the palmist A . To how many questions
did the palmists A and B give the same answer, when the palmist A answered correctly
51% of all questions?

Answer: 50%.

Solution. As the palmist A answered uncorrectly to 49% of all questions there were
4

7
·49 = 28 per cent questions that were answered uncorrectly by A but correctly by B and

21% questions that both answered uncorrectly. On the other side, as A answered correctly

to
22

43
of questions answered uncorrectly by B , then the part of questions answered

uncorrectly by both palmists was
21

43
among questions answered uncorreclty by palmist

B . As both palmists answered uncorrectly 21% of all questions, the palmist B answered
uncorrectly 43% of all questions and there were 22% of questions that were answered
uncorrectly by B but correctly by A . So there were 28 + 22 = 50 pro cent of questions
that were answered differently by A and B and so their opinion coincided in another half
of questions.

Older group (11th–12th grade)

2. Let a be an integer. Find the all real solutions of the equation

[x] = ax+ 1

where [x] denotes the integer part of x .

Answer: If a < −1 then x = −1

a
; if a = 0 then every such real number x is suitable that

1 6 x < 2; if a = 2 then x = −3

2
or x = −1; if a > 2 then x = −2

a
; if a = −1 or a = 1

then the equation has no solutions.

Solution. We will use the inequalities x− 1 < [x] 6 x holding for all real numbers x .

1) If a = 0 then [x] = 1 that is 1 6 x < 2.

2) Since [x] 6 x < x+ 1, the equation has no solutions if a = 1.

3) Let a > 2. We will obtain the inequalities (a− 1)x > −2 and (a− 1)x 6 −1 that is

− 2

a− 1
< x 6 − 1

a− 1
.

Since − 2

a− 1
> −2 and − 1

a− 1
< 0, we get two possibilities if a = 2: [x] = −2 or

[x] = −1, the corresponding values of x are x = −3

2
and x = −1 (these are really

solutions). If a > 2 then the only possibility is [x] = −1 and x = −2

a
which satisfies the

equation.
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4) Let a 6 −1. Then a− 1 < 0 and we obtain the inequalities

2

1− a
> x >

1

1− a
.

Since
1

1− a
> 0 and

2

1− a
6 1 then consequently [x] = 0. The possibility a = −1 gives

us a contradiction, if a < −1 then the solution is x = −1

a
.

3. A n × m-table filled with positive integers was written on the paper. John wrote after
each row the greatest common divisor of the numbers of this row and below each column
the least common multiple of the numbers of this column. Let a be the least common
multiple of the column of the greatest common divisors and let b be the greatest common
divisor of the row of the least common multiples. Prove that b is divisible by a .

Solution. Let cij denote the element of the ith row and the jth column. We fix the row
i and the column j arbitrarily. Then the least common multiplier of the numbers of the
jth column is divisible by cij and cij is divisible by the greatest common divisor of the
numbers of the ith row. Thus the number written below the jth column is divisible by the
number written after the ith row. Since j was chosen arbitrarily, the number written after
the ith row is the common factor of all the numbers written below the columns. Thus the
greatest common factor b of all the numbers written below the columns is divisible by
the number written after the ith row. Since i was chosen arbitrarily, the number b is the
common multiple for all the numbers written after the rows. Thus b is divisible by the
least common multiple a of all the numbers written after the rows.

4. On the conference of linguists there were n > 3 participants who could speak altogether
14 different languages. It is known that for every three linguists existed a language that
was spoken by all three. But every language was spoken by no more than a half of linguists.
Find the minimal possible value of n .

Answer: The minimal possible value of n is 8.

Solution. If n 6 5 then we choose an arbitrary triple and we get a language that is spoken
by at least 3 that is more than a half of the participants, contradicting the conditions of
the problem. If n = 6 or n = 7 then we choose arbitrary 6v linguists. It is possible to
form 20 different triples of the linguists. By pigeon-hole principle there exists a language
that is the same for at least two triples and therefore is spoken by at least 4 linguists.
This is again a contradiction because 4 is more than a half of 6 or 7. If n = 8 then it is
possible to find the construction satisfying the conditions of the problem:

1 A C E G I K M

2 A C E H J L N

3 A D F G I L N

4 A D F H J K M

5 B C F G J K N

6 B C F H I L M

7 B D E G J L M

8 B D E H I K N

(here the letters A, . . . ,N denote the languages and the numbers 1, . . . , 8 denote the
participants).

13



Comment: Constructing the example for the case n = 8 we can use the following condi-
tions that have to be satisfied (why?):

a) Every language is spoken by exactly 4 linguists;

b) Every linguist can speak exactly 7 languages;

c) For every three linguists there is one and only one language spoken by all of them.

5. On the side BC of the triangle ABC a point D different from B and C is chosen so
that the bisectors of the angles ACB and ADB intersect on the side AB . Let D′ be the
symmetrical point to D with respect to the line AB . Prove that the points C , A and D′

are on the same line.

Solution. Let E be the intersection point of the bisectors of the angles ACB and ADB

and let 6 ACB = δ1 , 6 ADB = δ2 and 6 CBA = α .

δ1
δ2 α

C B

A

D

E

D′

By the property of the bisector for the triangles ABC and ABD we get

|AC|
|BC| =

|AE|
|BE| =

|AD|
|BD| ,

and by the law of sines for the same triangles

|AC|
|BC| =

sinα

sin(180◦ − α− δ1)
=

sinα

sin(α+ δ1)
,

|AD|
|BD| =

sinα

sin(180◦ − α− δ2)
=

sinα

sin(α+ δ2)
.

Consequently

sinα

sin(α+ δ1)
=

sinα

sin(α+ δ2)
,

hence

sin(α+ δ1) = sin(α+ δ2).

There are two possibilities for this equation.
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1) α + δ1 = α + δ2 , that is δ1 = δ2 . This is not possible because the point D is in the
interior of the segment BC .

2) α + δ1 + α + δ2 = π , that is δ1 + δ2 + 2α = π . Since the triangles ADB and AD′B

are congruent then 6 AD′B = 6 ADB = δ2 and 6 ABD′ = 6 ABD = α and the point A

is on the side CD′ of the triangle BCD′ .

1. Let a be an integer, which square divided by n gives the remainder 1. Which remainder
can be obtained dividing the number a by n , if

a) n = 16;

b) n = 3k , where k is a positive integer?

Answer: a) 1, 7, 9 or 15; b) 1 or 3k − 1.

Solution. a) As the square of an even number is an even number and gives an even remain-
der dividing by 16 the number a must be an odd number. Examining three possible cases
we find that only 1, 7, 9 and 15 fit. It is possible to reduce the number of examinations
needed by noticing that the squares of the numbers i and 16− i give the same remainder
by dividing by 16.

b) It’s clear that the squares of the remainders 1 and n− 1 give the remainder 1 modulo

n . Let’s assume that the number a2 gives the remainder 1 by dividing by n = 3k and
let’s prove that number a gives the remainder 1 or 3k − 1 by dividing by 3k . From the

assumption we get that 3k divides the number a2 − 1 = (a− 1)(a+ 1), hence there exist

natural numbers i and j that i+j = k where 3i divides the number a−1 and 3j divides
the number a+1. If both i and j were positive then both numbers a−1 and a+1 would
be divisible by 3, but that’s impossible. Therefore one of the nest cases must occur: i = 0
and j = k , or j = 0 and i = k . Hence one of the numbers a− 1 and a+1 is divisible by
3k , or in another way, a gives the remainder 1 or 3k − 1 by dividing by 3k .

Comment. The arguments in the part b) will still hold if number 3 is replaced by any
other odd prime number.

2. A polynomial anx
n + an−1x

n−1 + . . . + a1x + a0 is called alternating, when n > 1 and
for all i = 1, 2, . . . , n the coefficients ai and ai−1 are nonzero real numbes with different
signs. Let P (x) and Q(x) be arbitrary alternating polynomials. Prove that the polynomial
R(x) = P (x)Q(x) is alternating.

Solution. Let’s define α(x) = P (−x) and β(x) = Q(−x). Then α and β are polynomials
which coefficients all have same sign. Hence in the product γ of the polynomials α and
β all coefficients have the same sign as well (all coefficients are positive if the signs of
coefficients in α and β are same and negative if the signs of coefficients in α and β are
different). Therefore

R(x) = P (x)Q(x) = α(−x)β(−x) = γ(−x)

and the polynomial R is alternating.

3. Two right triangles are given, of which the incircle of the first triangle is the circumcircle
of the second triangle. Let the areas of the triangles be S and S′ respectively. Prove that

S

S′
> 3 + 2

√
2 .
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Solution. Let the lenghts of the legs of the outer triangle be a and b , the lenght of the
hypotenuse be c and the radius of its incircle be r (see figure 10). Then the length of
the hypotenuse of the inner triangle is 2r and the altitude h drawn to hypotenuse is not

greater than r . Hence S′ =
1

2
· 2rh = rh 6 r2. We know that S =

ab

2
=

a+ b+ c

2
r , from

what using the inequality between arithmetical mean and geometrical mean we get

ab = (a+ b+ c) · r = ((a+ b) +
√

a2 + b2) · r > (2
√
ab+

√
2ab) · r =

= (2 +
√
2)
√
ab · r ,

e.g.
√
ab > (2 +

√
2) · r . Squaring both sides of the equation and dividing by 2 we get

S > (3 + 2
√
2) · r2 . Bearing in mind that

1

S′
>

1

r2
we see that

S

S′
> 3 + 2

√
2.

ra

b

c

r
r

· h

Figure 10

4. On n cells of an infinite squared board there is one piece on each cell. If one of the four
neighbours of the cell containing the piece A contains the piece B and the cell behind it is
empty, the piece A can be moved over the piece B to the empty cell behind it. Does there
exist such a combination of pieces from which it is possible in finite number of moves to
obtain the situation where the final combination of pieces is the same as in the beginning
but moved by one cell in any direction, if

a) n = 1999;

b) n = 2000;

c) n = 1998?

Answer: a) no; b) yes; c) no.

Solution. a) Let’s colour the cells black and white as in the chessboard. As the number
1999 is odd, in the initial combination there are on cells of one colour (for example white)
more pieces than on cells of another colour (for example black). As from one side moving
the pieces as required in the problem we can move each piece only on cells coloured with
same colour but from another side in the final combination we should have more pieces
on black cells as on white cells we get a contradiction.

b) It’s easy to see that we can move a block consisting of 2× 2 pieces by one cell in any
direction. We can get a suitable initial combination placing 2000 pieces on the squared
board in 500 blocks as shown in the figure 11.

c) Let’s colour the cells with four colours as shown in the figure 12. As the number 1998
is not divisible by four there will be on cells of some colour (for example red) more pieces
than on cells of some other colour (for example blue). As we can move each piece only on
cells of same colour we get a contradiction as the problem requires that we should be able
to move the pieces so that in final configuration there are more pieces on blue cless than
on red cells.
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5. Inside the square ABCD there is the square A′B′C ′D′ so that the segments AA′ , BB′ ,
CC ′ and DD′ do not intersect each other neither the sides of the smaller square (the
sides of the larger and the smaller square do not need to be parallel). Prove that the sum
of areas of the quadrangles AA′B′B and CC ′D′D is equal to the sum of areas of the
quadrangles BB′C ′C and DD′A′A .

Solution. When the centres of smaller and larger square coincide then the quadrangles
AA′B′B , BB′C ′C , CC ′D′D and DD′A′A are congruent and the assertion of the problem
holds. Therefore it is enough to show that the sum of areas of the quadrangles AA′B′B

and CC ′D′D does not change by any parallel displacement of smaller square (with this
displacement we alwyas can make the centres of the squares coincide).

A B

CD

D′

A′

B′

C ′

Figure 13

Without loss of generality we can assume that the vertex A′ of the smaller square is not
further off the side AB than the vertex B′ (otherwise we can change the labels of the
vertices A and B ; C and D ; A′ and B′ ; C ′ and D′ ). Then the diagonal A′B lies inside
the quadrangle AA′B′B and divides it into two triangles ABA′ and A′B′B (see figure 13).
Also the vertex C ′ lies not further off the side CD than the vertex D′ , because of what the
diagonal C ′D lies inside the quardangle CC ′D′D and divides it into two triangles CDC ′

and C ′D′D . The areas of triangles ABA′ and CDC ′ does not change by any parallel
displacement of smaller square parallel to the side AB of the larger square (because their
basis AB and CD and the altitudes drawn on them don’t change) and the sum of the
areas of these triangles doesn’t change by any parallel displacement of smaller square
parallel to the side BC of the larger square (because their basis and the sum of their
altitudes don’t change). As every parallel displacement can be done by two displacement
perpendicular to each other so the sum of the areas of the triangles ABA′ and CDC ′

doesn’t change by any parallel displacement of smaller square inside the larger square.
Analogically we can see that the sum of areas of triangles A′B′B and C ′D′D doesn’t
change by parallel displacement parallel to any side of smaller square (because their basis
A′B′ and C ′D′ and the sum of their altitudes don’t change). So the sum of the areas of
the quardangles AA′B′B and CC ′D′D does not change by any parallel displacement of
the smaller square inside the larger square.
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